首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Many viruses have evolved strategies that target crucial components within the apoptotic cascade. One of the best studied is the caspase 8 inhibitor, crmA/Spi-2, encoded by members of the poxvirus family. Since many proapoptotic stimuli induce apoptosis through a mitochondrion-dependent, caspase 8-independent pathway, we hypothesized that vaccinia virus would encode a mechanism to directly modulate the mitochondrial apoptotic pathway. In support of this, we observed that Jurkat cells, which undergo Fas-mediated apoptosis exclusively through the mitochondrial route, were resistant to Fas-induced death following infection with a crmA/Spi-2-deficient strain of vaccinia virus. In addition, vaccinia virus-infected cells subjected to the proapoptotic stimulus staurosporine exhibited decreased levels of both cytochrome c released from the mitochondria and caspase 3 activation. In all cases we found that the loss of the mitochondrial membrane potential, which occurs as a result of opening the multimeric permeability transition pore complex, was prevented in vaccinia virus-infected cells. Moreover, vaccinia virus infection specifically inhibited opening of the permeability transition pore following treatment with the permeability transition pore ligand atractyloside and t-butylhydroperoxide. These studies indicate that vaccinia virus infection directly impacts the mitochondrial apoptotic cascade by influencing the permeability transition pore.  相似文献   

2.
Imaging the permeability pore transition in single mitochondria.   总被引:11,自引:0,他引:11       下载免费PDF全文
In mitochondria the opening of a large proteinaceous pore, the "mitochondrial permeability transition pore" (MTP), is known to occur under conditions of oxidative stress and matrix calcium overload. MTP opening and the resulting cellular energy deprivation have been implicated in processes such as hypoxic cell damage, apoptosis, and neuronal excitotoxicity. Membrane potential (delta psi(m)) in single isolated heart mitochondria was measured by confocal microscopy with a voltage-sensitive fluorescent dye. Measurements in mitochondrial populations revealed a gradual loss of delta psi(m) due to the light-induced generation of free radicals. In contrast, the depolarization in individual mitochondria was fast, sometimes causing marked oscillations of delta psi(m). Rapid depolarizations were accompanied by an increased permeability of the inner mitochondrial membrane to matrix-entrapped calcein (approximately 620 Da), indicating the opening of a large membrane pore. The MTP inhibitor cyclosporin A significantly stabilized delta psi(m) in single mitochondria, thereby slowing the voltage decay in averaged recordings. We conclude that the spontaneous depolarizations were caused by repeated stochastic openings and closings of the transition pore. The data demonstrate a much more dynamic regulation of membrane permeability at the level of a single organelle than predicted from ensemble behavior of mitochondrial populations.  相似文献   

3.
Hyperstimulation with cholecystokinin analogue cerulein induces a mild edematous pancreatitis in rats. There is evidence for a diminished energy metabolism of acinar cells in this experimental model. The aim of this study was to demonstrate permeability transition of the mitochondrial inner membrane as an early change in mitochondrial function and morphology. As functional parameters, the respiration and membrane potential of mitochondria isolated from control and cerulein-treated animals were measured, and changes in volume and morphology were investigated by swelling experiments and electron microscopy. Five hours after the first injection of cerulein, the leak respiration was nearly doubled and the resting membrane potential was decreased by about 17 mV. These alterations were reversed by extramitochondrial ADP or did not occur when cyclosporin A was added to the mitochondrial incubation. A considerable portion of the mitochondria isolated from cerulein-treated animals was swollen and showed dramatic changes in morphology such as a wrinkled outer membrane and the loss of a distinct cristae structure. These data provide evidence for the opening of the mitochondrial permeability transition pore at an early stage of cerulein induced pancreatitis. This suggests that the permeability transition is an initiating event for lysis of individual mitochondria and the initiation of apoptosis and/or necrosis, as had been shown to occur in this experimental model.  相似文献   

4.
Shedding light on the mitochondrial permeability transition   总被引:1,自引:0,他引:1  
The mitochondrial permeability transition is an increase of permeability of the inner mitochondrial membrane to ions and solutes with an exclusion size of about 1500Da. It is generally accepted that the permeability transition is due to opening of a high-conductance channel, the permeability transition pore. Although the molecular nature of the permeability transition pore remains undefined, a great deal is known about its regulation and role in pathophysiology. This review specifically covers the characterization of the permeability transition pore by chemical modification of specific residues through photoirradiation of mitochondria after treatment with porphyrins. The review also illustrates the basic principles of the photodynamic effect and the mechanisms of phototoxicity and discusses the unique properties of singlet oxygen generated by specific porphyrins in discrete mitochondrial domains. These experiments provided remarkable information on the role, interactions and topology of His and Cys residues in permeability transition pore modulation and defined an important role for the outer membrane 18kDa translocator protein (formerly known as the peripheral benzodiazepine receptor) in regulation of the permeability transition.  相似文献   

5.
It has been suggested that release of cytochrome c (Cyt c) from mitochondria during apoptotic death is through opening of the mitochondrial permeability transition pore followed by swelling-induced rupture of the mitochondrial outer membrane. However, this remains controversial and may vary with cell type and model system. We determined that in mouse cerebellar granule neurons, Cyt c redistribution preceded the loss of mitochondrial membrane potential during the apoptotic process, suggesting that the pore did not open prior to release. Furthermore, when mitochondria were morphologically assessed by electron microscopy, they were not obviously swollen during the period of Cyt c release. This indicates that the pore mechanism of action, if any, is not through mitochondrial outer membrane rupture. While bongkrekic acid, an inhibitor of pore opening, modestly delayed apoptotic death, it also caused a significant (p < 0.05) suppression of protein synthesis. An equivalent suppression of protein synthesis by cycloheximide had a similar delaying effect, suggesting that bongkrekic acid was acting non-specifically. These findings suggest that mitochondrial permeability transition pore is not involved in Cyt c release from mitochondria during the apoptotic death of cerebellar granule neurons.  相似文献   

6.
The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 microm) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.  相似文献   

7.
Mitochondria of the yeast Endomyces magnusii were examined for the presence of a Ca2+- and phosphate-induced permeability of the inner mitochondrial membrane (pore). For this purpose, coupled mitochondria were incubated under conditions known to induce the permeability transition pore in animal mitochondria, i.e., in the presence of high concentrations of Ca2+ and P(i), prooxidants (t-butylhydroperoxide), oxaloacetate, atractyloside (an inhibitor of ADP/ATP translocator), SH-reagents, by depletion of adenine nucleotide pools, and deenergization of the mitochondria. Large amplitude swelling, collapse of the membrane potential, and efflux of the accumulated Ca2+ were used as parameters for demonstrating pore induction. E. magnusii mitochondria were highly resistant to the above-mentioned substances. Deenergization of mitochondria or depletion of adenine nucleotide pools have no effect on low-amplitude swelling or the other parameters. Cyclosporin A, a specific inhibitor of the nonspecific permeability transition in animal mitochondria, did not affect the parameters measured. It is thus evident that E. magnusii mitochondria lack a functional Ca2+-dependent pore, or possess a pore differently regulated as compared to that of mammalian mitochondria.  相似文献   

8.
Relationships among the multiple events that precede the mitochondrial membrane permeability transition (MPT) are not yet clearly understood. A combination of newly developed instrumental and computational approaches to this problem is described. The instrumental innovation is a high-resolution digital apparatus for the simultaneous, real-time measurement of four mitochondrial parameters as indicators of the respiration rate, membrane potential, calcium ion transport, and mitochondrial swelling. A computational approach is introduced that tracks the fraction of mitochondria that has undergone pore opening. This approach allows multiple comparisons on a single time scale. The validity of the computational approach for studying complex mitochondrial phenomena was evaluated with mitochondria undergoing an MPT induced by Ca(2+), phenylarsine oxide or alamethicin. Selective ion leaks were observed that precede the permeability transition and that are inducer specific. These results illustrate the occurrence of inducer-specific sequential changes associated with the induction of the permeability transition. Analysis of the temporal relationship among the multiple mitochondrial parameters of isolated mitochondria should provide insights into the mechanisms underlying these responses.  相似文献   

9.
Relationships among the multiple events that precede the mitochondrial membrane permeability transition (MPT) are not yet clearly understood. A combination of newly developed instrumental and computational approaches to this problem is described. The instrumental innovation is a high-resolution digital apparatus for the simultaneous, real-time measurement of four mitochondrial parameters as indicators of the respiration rate, membrane potential, calcium ion transport, and mitochondrial swelling. A computational approach is introduced that tracks the fraction of mitochondria that has undergone pore opening. This approach allows multiple comparisons on a single time scale. The validity of the computational approach for studying complex mitochondrial phenomena was evaluated with mitochondria undergoing an MPT induced by Ca2+, phenylarsine oxide or alamethicin. Selective ion leaks were observed that precede the permeability transition and that are inducer specific. These results illustrate the occurrence of inducer-specific sequential changes associated with the induction of the permeability transition. Analysis of the temporal relationship among the multiple mitochondrial parameters of isolated mitochondria should provide insights into the mechanisms underlying these responses.  相似文献   

10.
Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors.  相似文献   

11.
BMAP-28, a bovine antimicrobial peptide of the cathelicidin family, induces membrane permeabilization and death in human tumor cell lines and in activated, but not resting, human lymphocytes. In addition, we found that BMAP-28 causes depolarization of the inner mitochondrial membrane in single cells and in isolated mitochondria. The effect of the peptide was synergistic with that of Ca(2+) and inhibited by cyclosporine, suggesting that depolarization depends on opening of the mitochondrial permeability transition pore. The occurrence of a permeability transition was investigated on the basis of mitochondrial permeabilization to calcein and cytochrome c release. We show that BMAP-28 permeabilizes mitochondria to entrapped calcein in a cyclosporine-sensitive manner and that it releases cytochrome c in situ. Our results demonstrate that BMAP-28 is an inducer of the mitochondrial permeability transition pore and that its cytotoxic potential depends on its effects on mitochondrial permeability.  相似文献   

12.
Reactive oxygen species (ROS) can trigger a transient burst of mitochondrial ROS production via ROS activation of the mitochondrial permeability transition pore (MPTP), a phenomenon termed ROS-induced ROS release (RIRR). The goal of this study was to investigate if the generation of ROS in a discrete region of a cardiomyocyte could serve to propagate RIRR-mediated mitochondrial depolarizations throughout a cell. Our experiments revealed that localized RIRR activated either RIRR-mediated fluctuations in mitochondrial membrane potential (time period: 3-10 min) or a traveling wave of depolarization of the cell's mitochondria (velocity: approximately 5 microm/min). Both phenomena appeared to be mediated by the mitochondrial permeability transition pore and eventually encompassed the majority of the mitochondrial population of both isolated rat and rabbit cardiomyocytes. Furthermore, depolarization was often reversible; the waves of depolarization were then followed by a rapid (approximately 40 microm/min) repolarization wave of the mitochondria. We show that the RIRR can function to communicate the mitochondrial permeability transition from one mitochondrion to another in the isolated adult cardiomyocyte.  相似文献   

13.
We investigated the role of the mitochondrial inner membrane permeability transition and subsequent release of cytochrome c into the cytosol during oxidative stress-evoked apoptosis. Sublethal oxidative stress was applied by treating L929 cells with 0.5 mM H2O2 for 90 min. Then the cellular localization of cytochrome c was examined by immunofluorescent staining and Western blotting. H2O2 treatment caused the permeability transition and pore formation, resulting in membrane depolarization and translocation of cytochrome c from the mitochondria into the cytosol. Pretreatment with cyclosporin A and aristolochic acid (to inhibit pore formation) significantly attenuated a reduction of the mitochondrial membrane potential, as well as signs of apoptosis such as DNA fragmentation, increased plasma membrane permeability, and chromatin condensation. Therefore, exposure to H2O2 caused the opening of permeability transition pores in the inner mitochondrial membrane. An essential role of cytosolic cytochrome c in the execution of apoptosis was demonstrated by its direct microinjection into the cytosol, thus bypassing the need for cytochrome c release from the mitochondrial intermembrane space. Microinjection of cytochrome c caused caspase-dependent apoptosis.  相似文献   

14.
Taurine chloramine (TN-Cl) is one of the most abundant compounds generated by activated neutrophils. In contrast to HOCl, which causes necrosis, TN-Cl is a potent inducer of apoptosis in tumor cells. Here we show that the apoptosis induced by TN-Cl in human B lymphoma cells is dependent upon oxidant-mediated mitochondrial damage, a decrease in mitochondrial membrane potential, and caspase-9 activation. Further, we show that TN-Cl is taken up into the cells and is concentrated in the mitochondria, where it induces opening of the permeability transition pore and mitochondrial swelling. Identical activity is seen upon treatment of isolated mitochondria with TN-Cl and is blocked by the permeability transition pore inhibitors bongkrekic acid and cyclosporin A, as well as by the sulfhydryl-reducing agent tris(2-carboxyethyl)-phosphine. The data suggest that TN-Cl causes apoptosis through direct damage to the mitochondria.  相似文献   

15.
《BBA》2022,1863(7):148586
Plant mitochondria are sensitive organelles affected by changing environmental stressors. Upon heat shock or the presence of reactive oxygen species, plant mitochondria undergo in vivo morphological derangements associated with the extensively characterized opening of the mitochondrial permeability transition pore. Nevertheless, the classic mitochondrial permeability transition is known to be triggered by calcium overload causing mitochondrial swelling and dysfunction. Here we review evidence concerning calcium handling, permeability transition and mitochondrial impairments in plants, supporting the notion that the mitochondrial morphology transition is an in vivo indicator of the permeability transition.  相似文献   

16.
We recently described that there is a feedback amplification of cytochrome c release from mitochondria by caspases. Here we investigated how caspases impact on mitochondria to induce cytochrome c release and found that recombinant caspase-3 induced opening of permeability transition pore and reduction of membrane potential in vitro. These events were inhibited by Bcl-xL, cyclosporin A and z-VAD.fmk. Moreover, caspase-3 stimulated the rate of mitochondrial state 4 respiration, superoxide production and NAD(P)H oxidation in a Bcl-xL- and cyclosporin A-inhibitable manner. These results suggest that caspase-3 induces cytochrome c release by inducing permeability transition pore opening which is associated with changes in mitochondrial respiration and redox potential.  相似文献   

17.
Mitochondrial regulation of synaptic plasticity in the hippocampus   总被引:8,自引:0,他引:8  
Synaptic mechanisms of plasticity are calcium-dependent processes that are affected by dysfunction of mitochondrial calcium buffering. Recently, we observed that mice deficient in mitochondrial voltage-dependent anion channels, the outer component of the mitochondrial permeability transition pore, have impairments in learning and hippocampal synaptic plasticity, suggesting that the mitochondrial permeability transition pore is involved in hippocampal synaptic plasticity. In this study, we examined the effect on synaptic transmission and plasticity of blocking the permeability transition pore with low doses of cyclosporin A and found a deficit in synaptic plasticity and an increase in base-line synaptic transmission. Calcium imaging of presynaptic terminals revealed a transient increase in the resting calcium concentration immediately upon incubation with cyclosporin A that correlated with the changes in synaptic transmission and plasticity. The effect of cyclosporin A on presynaptic calcium was abolished when mitochondria were depolarized prior to cyclosporin A exposure, and the effects of cyclosporin A and mitochondrial depolarization on presynaptic resting calcium were similar, suggesting a mitochondrial locus of action of cyclosporin A. To further characterize the calcium dynamics of the mitochondrial permeability transition pore, we used an in vitro assay of calcium handling by isolated brain mitochondria. Cyclosporin A-exposed mitochondria buffered calcium more rapidly and subsequently triggered a more rapid mitochondrial depolarization. Similarly, mitochondria lacking the voltage-dependent anion channel 1 isoform depolarized more readily than littermate controls. The data suggest a role for the mitochondrial permeability transition pore and voltage-dependent anion channels in mitochondrial synaptic calcium buffering and in hippocampal synaptic plasticity.  相似文献   

18.
The isothiourea derivative, KB-R7943, inhibits the reverse-mode of the plasma membrane sodium/calcium exchanger and protects against ischemia/reperfusion injury. The mechanism through which KB-R7943 confers protection, however, remains controversial. Recently, KB-R7943 has been shown to inhibit mitochondrial calcium uptake and matrix overload, which may contribute to its protective effects. While using KB-R7943 for this purpose, we find here no evidence that KB-R7943 directly blocks mitochondrial calcium uptake. Rather, we find that KB-R7943 inhibits opening of the mitochondrial permeability transition pore in permeabilized cells and isolated liver mitochondria. Furthermore, we find that this observation correlates with protection against calcium ionophore-induced mitochondrial membrane potential depolarization and cell death, without detrimental effects to basal mitochondrial membrane potential or complex I-dependent mitochondrial respiration. Our data reveal another mechanism through which KB-R7943 may protect against calcium-induced injury, as well as a novel means to inhibit the mitochondrial permeability transition pore.  相似文献   

19.
Ca(2+)-release from rat liver mitochondria after protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP)-induced membrane depolarisation is studied. It is shown that the release of calcium is accompanied by an increase of the inner mitochondrial membrane permeability as the result of the opening of permeability transition pore (PTP). Calcium is released from mitochondria through the uniporter working in reverse mode and also by PTP mechanism which accounts for ruthenium red (RR)-insensitive component of total. Ca(2+)-release. Unlike Ca2+, the strontium release from the mitochondria is completely sensitive to RR, specific uniporter blocker, which shows the absence of rapid Sr(2+)-efflux mechanisms other than uniporter of bivalent cations. The data obtained also give an evidence that the lifetime of the open state of the pore is limited, and barrier properties of the mitochondrial membrane are restored after the closure of the pore.  相似文献   

20.
AimsMitochondrial permeability transition is established after massive Ca2+ accumulation inside the matrix, in addition to an inducer. The closure of the pore can be accomplished by adenosine diphosphate and the immunosuppressant cyclosporin A. Recently, the estrogen antagonist, tamoxifen, has been introduced as an inhibitor of the opening of the permeability transition pore. However, the mechanism by which this drug inhibits pore opening is still under discussion. This work was performed with the purpose of establishing the membrane system involved in tamoxifen-induced pore closure. For this purpose, permeability transition was induced after the addition of carboxyatractyloside, which is a specific reagent that interacts with the adenine nucleotide translocase.Main methodsPermeability transition was assessed by analyzing matrix Ca2+ release, transmembrane electric gradient, and mitochondrial swelling in aged, as well as in freshly prepared mitochondria. Also, cytochrome c content was analyzed in membrane mitochondria as well as in the supernatant.Key findingsIn freshly prepared mitochondria, tamoxifen, at the concentration of 10 μM, totally inhibited nonspecific membrane permeability induced by 1 μM carboxyatractyloside. In addition, tamoxifen inhibited non-specific permeability in aged mitochondria and diminished membrane fluidity.SignificancePlausibly, the inhibitory effect of tamoxifen on nonspecific membrane permeability, as induced by carboxyatractyloside, should be ascribed to a diminution, of membrane fluidity by this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号