首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
400 MHz 1H-resonances of 1-phosphatidyl-myoinositol (PI), PI 4-phosphate (DPI) and PI 4,5-bisphosphate (TPI) in CD3OD were assigned. Proton resonances in the inositol moiety shift downfield with the increase in the number of the phosphate from PI to TPI. From the 1H-1H and 1H-31P vicinal coupling constants, rotamer populations around bonds in the polar headgroups were calculated. The H-C(5)O-P bond at position 5 of the inositol moiety tends to assume a gauche form. The H-C(1)O-P and the H-C(4)O-P bonds are not so strongly restricted to the gauche form as the H-C(5)O-P bond. The conformation of the glycerol moiety in PI, DPI and TPI is similar to that in phosphotidylcholine (PC) and phosphatidylethanolamine (PE). The CH-CH2O-P bond in the glycerol moiety assumes a trans form. The acyl chains prefer a gauche arrangement to each other around the CHCH2OCOR bond.  相似文献   

2.
Two hundred and thirty three nucleotide sequences of tRNAs were investigated to elucidate the frequency of appearance of C-A (cytosine-adenine) pairs in their main two-stranded regions, in the positions 26–44 and 15–482. It was supposed that in the formation of C-A pairs on antiparallel polynucleotide chains the atomic groups -N4H and -N3 of cytosine make up Hbonds with the groups N7- and HN6- of adenine. On parallel chains, Hbonds, probably, form -N6H and -N1 groups of adenine with N3- and HN4- of cytosine. The calculation results predicted a significant energy of interaction between cytosine and adenine. By the investigation of the molecular models it was shown that the formation of Hbonded C-A pairs requires considerable changes of conformation in ribose-phosphate chains. In addition, a theoretical analysis revealed the possibility of formation of C-A pairs at the wobble-position of the codon-anticodon complex. The significance of this nucleotide pair in the processes of genetic coding proved to depend on the stability of the codon-anticodon complex, the modification of cytosine 34 and structural features of the distant regions of the tRNA.  相似文献   

3.
《Inorganica chimica acta》1988,153(3):155-159
The interaction of D-glucose with hydrated uranyl salts has been investigated in solution and solid adducts of the type UO2(D-glucose)X2·2H2O, where X = Cl, Br, NO3 and 0.5 SO42− have been isolated. These adducts are characterized by means of FT-IR, 1H NMR and molar conductivity measurements.Spectroscopic evidence suggested that UO22+ cation could be bonded to one D-glucose molecule (possibly through O(1)H and O(2)H hydroxyl groups) and to two H2O, resulting in six-coordination around the uranium ion.The strong sugar H-bonding network is perturbed, on metal ion interaction and the D-glucose α-anomeric structure is favoured, upon uranyl cation coordination.  相似文献   

4.
《Inorganica chimica acta》1988,149(2):193-208
The reactions of Fe(CO)3(R-DAB; R1, H(4e)) (1a: R = i-Pr, R1 = H; 1b: R = t-Bu, R1 = H; 1c: R = c-Hex, R1 = H; 1e: R = p-Tol, R1 = H; 1f: R = i-Pr, R1 = Me) with Ru3(CO)12 and of Ru(CO)3(R-DAB; R1, H(4e)) (2a: R = i-Pr, R1 = H; 2d: R = CH(i-Pr)2, R1 = H) with Fe2(CO)9 in refluxing heptane both afforded FeRu(CO)6(R-DAB; R1, H(6e)) (3) in yields between 50 and 65%.The coordination mode of the ligand has been studied by a single crystal X-ray structure determination of FeRu(CO)6(i-Pr-DAB(6e)) (3a). Crystals of 3a are monoclinic, space group P21/a, with four molecules in a unit cell of dimensions: a = 22.436(3), b = 8.136(3), c = 10.266(1) Å and β = 99.57(1)°. The structure was refined to R = 0.049 and Rw = 0.052 using 3045 reflections above the 2.5σ(I) level. The molecule contains an FeRu bond of 2.6602(9) Å, three terminally bonded carbonyls to Fe, three terminally bonded carbonyls to Ru and bridging 6e donating i-Pr-DAB ligand. The i-Pr-DAB ligand is coordinated to Ru via N(1) and N(2) occupying an apical and equatorial site respectively (RuN(1) = 2.138(4) RuN(2) = 2.102(3) Å). The C(2)N(2) moiety of the ligand is η2-coordinated to Fe with C(2) in an apical and N(2) in an equatorial site (FeC(2) = 2.070(5) and FeN(2) = 1.942(3) Å).The 1H and 13C NMR data indicate that in all FeRu(CO)6(R-DAB(6e)) complexes (3a to 3f) exclusively η2-CN coordination to the Fe atom and not to the Ru atom is present irrespective of whether 3 was prepared by reaction of Fe(CO)3(R-DAB(4e)) (1) with Ru3(CO)12 or by reaction of Ru(CO)3(R-DAB(4e)) (2) with Fe2(CO)9. In the case of FeRu(CO)6(i-Pr-DAB; Me, H(6e)) (3f) the NMR data show that only the complex with the C(Me)N moiety of the ligand σ-N coordinated to the Ru atom and the C(H)N moiety η2-coordinated to the Fe atom was formed. Variable temperature NMR experiments up to 140 °C showed that the α-diimine ligand in 3a is stereochemically rigid bonded.FeRu(CO)6(R-DAB(6e)) (3a and 3e) reacted with allene to give FeRu(CO)5(R-DAB(4e))(C3H4) (4a and 4e). A single crystal X-ray structure determination of FeRu(CO)5(i-Pr-DAB(4e))(C3H4) (4a) was performed. Crystals of 4a are triclinic, space group P1, with two molecules in a unit cell of dimensions: a = 9.7882(7), b = 12.2609(9), c = 8.3343(7) Å, α = 99.77(1)°, β = 91.47(1)° and γ = 86.00(1)°. The structure was refined to R = 0.028 and Rw = 0.043 using 4598 reflections above the 2σ(I) level. The molecule contains an FeRu bond of 2.7405(7) Å and three terminally bonded carbonyls to iron. Two carbonyls are terminally bonded to the Ru atom together with a chelating 4e donating i-Pr-DAB ligand [RuN = 2.110(1) (mean)]. The allene ligand is coordinated in an η3-allylic fashion to the Fe atom while the central carbon of the allene moiety is σ-bonded to the Ru atom (FeC(14) = 2.166(3), FeC(15) = 1.970(2), FeC(16) = 2.127(3) and RuC(15) = 2.075(2) Å). The 1H and 13C NMR data show that in solution the coordination modes of the R-DAB and the allene ligands are the same as in the solid state.Thermolysis reactions of 3a with R-DAB or carbodiimides gave decomposition and did not afford C(imine)C(reactant) coupling products. Thermolysis reactions of 3a with M3(CO)12 (M = Ru, Os) and Me3NO gave decomposition. When the reaction of 3a with Me3NO was performed in the presence of dimethylacetylenedicarboxylate (DMADC) the known complex FeRu(CO)4(i-Pr-DAB(8e))(DMADC) (5a) was formed in low yield. In 5a the R-DAB ligand is in the 8e coordination mode with both the imine bonds η2-coordinated to iron. The acetylene ligand is coordinated in a bridging fashion, parallel with the FeRu bond.  相似文献   

5.
Endo-β-N-acetylglucosaminidase H from Streptomyces plicatus can be useful in determining both the molecular weight of the protein moiety of glycoproteins and their inherent number of oligosaccharide chains. In the case of carboxypeptidase Y the molecular mass of the carbohydrate free protein was confirmed as 51,000 daltons. The native enzyme was shown to contain 4 oligosaccharide chains each averaging about 14 mannose residues. On treatment of mung bean nuclease I with the endoglycosidase, the molecular mass decreased from 39,000 to 31,000 daltons. The peptides produced on reduction of this enzyme with thiol were 18,700 and 12,500 daltons, indicating that carbohydrate had been present on both. Penicillium nuclease P1 was decreased in size from 40,000 to 30,000 daltons by the endoglycosidase. Although most of the carbohydrate was removed from each of the native enzymes by the endoglycosidase, denaturation of the glycoproteins was necessary to effect complete removal. Enzyme activitywas not affected by carbohydrate depletion of these glycoproteins, a result consistent with similar studies on other oligosaccharide-containing enzymes.  相似文献   

6.
(NH4)3[Nb(O2)2F4] (I) and (NH4)3[Ta(O2)2F4] (II) are isostructural, and belong to the cubic Fm3m space group with four molecules in the unit cell. The unit cell parameters are a = 9.4442(4) (I) and a = 9.4512(4) Å (II). The structures were solved by the Patterson method and were refined by the least-squares method to the conventional R factors of 0.036 for 86 reflections (I) and 0.043 for 103 reflections (II) (in both structures having I ? 2σ(I)). The disordered distributions of fluorine and peroxo oxygens with partially occupied sites are observed. The disordered NH4+ tetrahedra appear in the structures.The metal atoms exhibit an octahedral coordination with two corners of a polyhedron at the centre of the peroxo bonds. Inter-atomic distances are NbF, 1.95(2), NbO, 1.94, TaF, 1.91(4) and TaO, 2.07 Å.The structures (I, II) are composed of [Mυ(O2)2-F4]3? octahedra and two symmetrically-independent ammonium cations connected by NH?O and NH?F hydrogen bonds. These two structures are compared with the structure of (NH4)3Ti(O2)F5].  相似文献   

7.
A combination of rational design based on mimicking natural protein–carbohydrate interactions and solid-phase combinatorial chemistry has led to the identification of an affinity ligand which displays selectivity for the mannose moiety of glycoproteins. The ligand, denoted 18/18 and comprising a triazine scaffold bis-substituted with 5-aminoindan, has been synthesised in solution, characterised by TLC, 1H-NMR and MS. When immobilised to amine-derivatised agarose at concentrations >24 μmol/g moist weight gel, ligand 18/18 selectively binds glucose oxidase. The adsorbed enzyme was quantitatively eluted with 0.5 M α- -methyl-mannoside and to a lesser extent with the equivalent glucoside. An investigation of the comparative retention times of saccharidic solutes showed that significant retardation was observed for α- -mannose, mannobiose and mannan, with little or no evidence for selective retention of other saccharides, with the exception of α- -fucose. Interestingly, α- -fucose and α- -mannose share an identical configuration of the hydroxyl groups on C-2, C-3 and C-4. Analysis of Scatchard plots from partition equilibrium studies on the interaction of glucose oxidase and the p-nitrophenyl-glycosides of -mannose, -glucose, -fucose and -galactose with immobilised 18/18 establish that the affinity constants (KAX) for the enzyme, the glycosides of mannose, glucose and fucose, and the p-nitrophenyl-galactoside are 4.3×105 M−1, 1.9×104 M−1 and 1.2×104 M−1 respectively. 1H-NMR studies on the interaction of α- -methyl-mannoside with ligand 18/18 in solution confirm the involvement of the hydroxyl group in the C-2 position. Molecular modelling suggests the formation of four hydrogen bonds between the hydroxyl groups at positions C-2, C-3 and C-4 of α- -methyl-mannoside and the bridging and ring nitrogen atoms of the triazine scaffold, with aromatic stacking of a second ligand against the carbohydrate face. The greater specificity of ligand 18/18 for mannose and glucose than for galactose parallels that exhibited by concanavalin A.  相似文献   

8.
The effects of prolyl-leucyl-glycinamide and cyclo (leucyl-glycine) on morphine-induced antinociception in mice and on in vitro binding of 3H-ligands for opiate receptor subtypes (μ, δ and κ) the mouse brain homogenate were determined. Subcutaneous administration of either of the above peptides (1, 2, and 4 mg/kg) 10 min prior to the injection of morphine did not affect morphine-induced antinociception as evidenced by the identical ED50 values of morphine in vehicle and peptide treated groups. The binding of 3H-dihydromorphine and 3H-naloxone ( μ receptors), 3HDAla2DLeu5-enkephalin (δ receptors), and 3H-ethylketocyclazocine (κ receptors) to opiate receptors in the mouse brain homogenate was also unaffected by both the peptides over a large concentration range. It is concluded that these peptides do not interact with brain opiate receptors.  相似文献   

9.
2,3-O-Isopropylidene-d-ribose diethyl dithioacetal, prepared from d-ribose, was converted in three steps into the corresponding dimethyl acetal, which was monotosylated at O-5, and the ester oxidized at C-4 with pyridinium chlorochromate; addition of methyl phenylphosphinate to the resulting pentos-4-ulose derivative then provided (4R,S)-4,5-anhydro-2,3-O-isopropylidene-4-C-[(R,S)-(methoxy)phenylphosphinyl]-d-erythro-pentose dimethyl acetal. Hydrogenation of this compound in the presence of Raney Ni, followed by reduction with SDMA, hydrolysis, and acetylation, yielded the title compounds (seven kinds), the structures of which were established on the basis of their 400-MHz, 1H-n.m.r. and mass spectra. A general dependence of the 2JPH and 3JPH values on the OPCH and PCCH dihedral angles provided an effective method for the assignment of the configurations and conformations of these 4-deoxy-4-phosphinyl-pentofuranoses.  相似文献   

10.
The carbohydrate components of influenza C virions grown in chicken kidney (CK) cells were analyzed by gel filtration following exhaustive digestion with Pronase. The [3H]glucosamine-labeled glycopeptides were larger and more heterogeneous than those of influenza A/WSN virions; three major size classes (G1, G2, and G3) were resolved. Treatment with Vibrio cholerae neuraminidase caused a decrease in size of G1 and G2, along with release of about 16% of the 3H label. The released sugar components were identified as N-acetylneuraminic acid by thin-layer chromatography. Peak G3 was highly labeled with [3H]mannose, whereas G1 and G2 contained lower levels of mannose. The three major viral glycoproteins gp88, gp65, and gp30 were isolated from sodium dodecyl sulfate-polyacrylamide gels, and their glycopeptide components were analyzed after Pronase digestion. The three size classes of glycopeptides were obtained from any of the three glycoproteins; however, the relative amounts of the three components varied among the glycoproteins. Host cell-derived components, which appear to be mucopolysaccharides and glycoproteins, were found associated with influenza C virions grown in CK cells. These components contained glycopeptides that were mainly of sizes similar to peak G2 from influenza C virions. Previous studies have shown that influenza A/WSN virus grown in several cell types contained only two size classes of glycopeptides. Two size classes comparable to peaks G2 and G3 from influenza C virions were also observed in influenza A/WSN grown in CK cells. Thus the large G1 glycopeptides appear to be characteristic of influenza C virions.  相似文献   

11.
Incubating white matter membranes with UDP-N-acetyl-[14C]glucosamine in the presence of Mg2+ and AMP resulted in the labeling of two major glycolipids, a minor glycolipid and several membrane-associated glycoproteins. The addition of AMP protected the labeled sugar nucleotide from degradation by a membrane-bound sugar nucleotide pyrophosphatase activity. While no labeled oligosaccharide lipid was recovered in a CHCl3CH3OHH2O (10:10:3) extract after incubating with only UDP-N-acetyl-[14C] glucosamine, Mg2+, and AMP, the inclusion of unlabeled GDP-mannose led to the formation of an N-acetyl-[14C]glucosamine-labeled oligosaccharide lipid that was soluble in CHCl3CH3OHH2O (10:10:3). The [GlcNAc-14C]oligosaccharide unit was released by treatment with 0.1 N HCl in 80% tetrahydrofuran at 50 °C for 30 min and appears to have the same molecular size as the lipid-linked [mannose-14C] oligosaccharide, formed enzymatically by white matter membranes as judged by their elution behavior on Bio-Gel P-6. The incorporation of N-acetyl-[14C]glucosamine into glycolipid was stimulated by exogenous dolichol monophosphate, but inhibited by UMP or tunicamycin, a glucosamine-containing antibiotic. Although UMP and tunicamycin drastically inhibited the labeling of glycolipid, these compounds had very little effect on the labeling of glycoproteins. The major glycolipids have the chemical and Chromatographic characteristics of N-acetylglucosaminylpyrophosphoryldolichol and N,N′-diacetylchitobiosylpyrophosphoryldolichol. When the labeled glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, four labeled polypeptides were observed, having apparent molecular weights of 145,000, 105,000, 54,000, and 35,000. Virtually all of the N-acetyl-[14C]glucosamine was released when the labeled glycopeptides, produced by pronase digestion, were incubated with an exo-β-N-acetylglucosaminidase, indicating that all of the N-acetyl-[14C]glucosamine incorporated under these conditions is attached to white matter membrane glycoproteins at nonreducing termini.  相似文献   

12.
The title compound (pipzH2)2Mo2Cl8·4H2O (pipz = piperazine),was isolated from the solution of (morphH)2Mo2Cl6(H2O)2 in HCl 1:1 by addition of (pipzH2)Cl2. This reaction indicates the reversibility of the substitution of chloride ions in Mo2Cl84? by water molecules. (pipzH2)2Mo2Cl8·4H2O crystallizes in the Pbca space group, with a = 15.154(2), b = 13.170(2), c = 12.208(2) Å and Z = 4. The structure was solved by the Patterson method and refined to the unweighted and weighted residuals of 0.050 and 0.048. The crystal structure is built form Mo2Cl84?, (pipzH2)2+ and H2O. The MoMo distance of 2.129(3) Å is the shortest one found in all structurally-characterised Mo2X84? (X = Cl, Br) anions. Four independent MoCl distances are 2.456(3), 2.445(3), 2.463(4) and 2.455(4) Å. The (pipzH22+ exists in a usual chair conformation. There is a network of hydrogen bonds of the type NH?Cl, NH?O, OH?Cl and OH?O between the ions and water molecules.  相似文献   

13.
《Inorganica chimica acta》1988,149(2):177-185
CpRuCl(PPh3)2 reacted with excess R-DAB in refluxing toluene to give CpRuCl(R-DAB(4e)) (1a: R = i-Pr; 1b: R = t-Bu; 1c: R = neo-Pent; 1d: R =p-Tol). 1H NMR and 13C NMR spectroscopic data indicated that in these complexes the R-DAB ligand is bonded in a chelating 4e coordination mode.Reaction of 1a and 1b with one equivalent of [Co(CO)4] afforded CpRuCo(CO)3(R-DAB(6e)) (2a: R = i-Pr; 2b: R = t-Bu). The structure of 2b was determined by a single crystal X-ray structure determination. Crystals of 2b are monoclinic, space group P21/n, with four molecules in a unit cell of dimensions: a = 16.812(4), b = 12.233(3), c = 9.938(3) Å and β = 105.47(3)°. The structure was solved via the heavy atom method and refined to R = 0.060 and Rw = 0.065 for the 3706 observed reflections. The molecule contains a RuCo bond of 2.660(3) Å and a cyclopentadienyl group that is η5-coordinated to ruthenium [RuC(cyclopentadienyl) = 2.208(3) Å (mean)]. Two carbonyls are terminally coordinated to cobalt (CoC(1) = 1.746(7) and CoC(2) = 1.715(6) Å) while the third is slightly asymmetrically bridging the RuCo bond (RuC(3) = 2.025(6) and CoC(3) = 1.912(6) Å). The RuC(3)O(3) and CoC(3)O(3) angles are 138.4(5)° and 136.5(5)°, respectively. The t-Bu-DAB ligand is in the bridging 6e coordination mode: σ-N coordinated to Ru (RuN(2) = 2.125(4) Å), μ2-N′ bridging the RuCo bond and η2-CN coordinated to Co (RuN(1) = 2.113(5), CoN(1) = 1.941(4) and CoC(4) = 2.084(5) Å). The η2-CN′ bonded imine group has a bond length of 1.394(7) Å indicating substantial π-backbonding from Co into the anti-bonding orbital of this CN bond.1H NMR spectroscopy indicated that 2a and 2b are fluxional on the NMR time scale. The fluxionality of 6e bonded R-DAB ligands is rarely observed and may be explained by the reversible interchange of the σ-N and η2-CN′ coordinated imine parts of the R-DAB ligand.  相似文献   

14.
The effect of 7-fluoro proscyclilin (PGI2-F), a chemically stable analogue of prostacyclin, on cAMP accumulation in and [3H]PGE binding to mastocytoma P-815 cells was compared with those of the Na salt and methyl ester of prostacyclin (PGI2Na or PGI2Me), which are rapidly inactivated in aqueous solution or metabolized in the tissue.PGIF was as effective as PGI2Me, and slightly less effective than PGI2Na in stimulating cAMP accumulation in mastocytoma cells and rabbit platelets. PGI2F was also more stable than PGI2Me or PGI2Na, and retained its original cAMP elevating activity even after incubation with or without cells for 4 h at 37°C. Cells which had been exposed to PGI2F and then washed free of unbound reagent continued to produced cAMP for more than 3 h. PGI2F was also as effective as PGE1 or PGE2 in displacing [3H]PGE2 bound to the cells. Non-competitive inhibition by PGI2F or PGI2Me of [3H]PGE2 binding to the cells, with apparent Kis of 1.29 μM and 1.13 μM, respectively, indicates the presence of different receptors for PGE2 and for PGI2F or PGI2Me in mastocytoma P-815 cells.  相似文献   

15.
The conformational change of the ribose ring in NH4GpG and cis-[Pt(NH3)2(GpG)]+ was confirmed by FT-IR spectroscopic evidence as being C2′-endo, C3′-endo, anti, gg sugar ring pucker in the solid state. These results were compared with 1H NMR spectral data in aqueous solution. The FT-IR spectrum of NH4GpG shows marker bands at 802 cm?1 and 797 cm?1 which are assigned to the C3′-endo, anti, gg sugar-phosphate vibrations of ribose (?pG) and ribose (Gp?), respectively. The FT-IR spectrum of cis-[Pt(NH3)2(GpG)]+ (with N7N7 chelation in the GpG sequence) shows a marker band at 800 cm?1 which is assigned to the C3′-endo, and a new shoulder band at 820 cm?1 related to a C2′-endo ring pucker. The ribose conformation of (?pG) moiety in NH4-GpG, C3′-endo, anti, gg changes into C2′-endo, anti, gg when a platinum atom is chelated to N7N7 in the GpG sequence.  相似文献   

16.
A major cell surface sialoglycoprotein with Concanavalin A receptor activity has been isolated from rat Zajdela ascites hepatoma cells. The sialic acid residues of the plasma membrane glycoproteins were specifically labeled by oxidation with NaIO4 followed by reduction with NaB3H4. Surface-labeled glycoproteins were released by short incubations with TPCK-trypsin at 37°C and then separated by gel filtration on Sepharose 6B column. The predominantly labeled fraction, GP II2, was then purified by chromatography on DEAE-cellulose equilibrated with 0.05 M phosphate buffer, pH 7.5, and eluted with increasing molarities of NaCl. It was shown to be homogeneous by protein and carbohydrate staining on SDS-polyacrylamide gels, isoelectric focusing, rechromatography on DEAE-cellulose and immunoelectrophoresis. It has an apparent molecular weight of 110,000 daltons. The location of GP II2on the cell surface was confirmed by the fact that it could be labeled metabolically with, D-(3H) glucosamine and externally through the nonpenetrating periodate-NaB3H4 system. GP II2could not be removed from the cell surface by high salt concentrations, chelator, or chaotropic agents but was released from the membrane by detergents. This suggests that GP II2could be an integral protein. Analysis of the carbohydrate composition of GP II2 revealed galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid as major constituents and mannose as a minor one. This suggests that it contains carbohydrate chains both O- and N-linked to the polypeptide chain, most of them being O-linked. Finally, GP II2has a potent Concanavalin A receptor activity. It inhibits the interaction between Concanavalin A and hepatoma cells and suppresses its effects on hepatoma cell proliferation.  相似文献   

17.
Slices were prepared from rat forebrains and the incorporation of [3H]mannose and [35S]methionine into proteins and glycoproteins determined. The incorporation of methionine continued to increase for up to 8 hours whereas mannose incorporation was maximal between 2 and 4 hours and declined thereafter. Glycopeptides prepared by pronase digestion of [3H]mannose-labeled glycoproteins were digested with endoglucosaminidase H (endo H) and analysed by gel filtration. The major endo H-sensitive oligosaccharide eluted in a position similar to standard Man8GlcNAc. In the presence of castanospermine, which inhibits glucosidase I, the first enzymatic step in the processing of N-linked oligosaccharides, a new endo H-sensitive glycan similar in size to standard Glc3Man9GlcNAc2 accumulated. Synaptic membranes (SMs) were isolated from slices which had been incubated with either [3H]mannose or [35S]methionine in the presence and absence of castanospermine. In the presence of inhibitor the relative incorporation of [3H]mannose into high-mannose glycans of synaptic glycoproteins was increased. The incorporation of newly synthesized, [35S] methioninelabeled, Con A-binding glycoproteins into SMs was not affected by the addition of inhibitor. Many of the glycoproteins synthesized in the presence of castanospermine exhibited a decreased electrophoretic mobility indicative of the presence of altered oligosaccharide chains. The results indicate that changes in oligosaccharide composition produced by castanospermine had little effect on the subsequent transport and incorporation of glycoproteins into synaptic membranes.To whom to address reprint requests.  相似文献   

18.
《Inorganica chimica acta》1988,153(3):145-153
The blue complexes produced by reaction of cis-diamminediaquoplatinum(II) nitrate, [cis-Pt(NH3)2(H2O)2](NO3)2, with disodium 5′-uridine monophosphate, 5′-UMP(Na2), in H2O and D2O have been investigated by FT-IR spectroscopy. On the basis of the spectral changes observed in the CO stretching region during the reactions, chelation of the amidate N(3)··O(2) moiety to Pt(II) appears to be more likely than N(4)··O(4) chelation. The antisymmetric PO stretching mode of the PO32− group of 5′-UMP splits into a triplet on complex formation indicating that PO32− plays an important role in the structure of the platinum blue complexes. In addition, the sugar moiety of 5′-UMP apparently adopts a predominantly C(3′)-endo conformation in the solid blue complex. Finally, Raman microprobe spectroscopy of the solid provides some evidence for PtN(3) bond formation.  相似文献   

19.
Purified membranes from surface-labelled phytohemagglutinin-resistant (PhaR) and wild-type chinese hamster ovary cells have been analysed by sodium dodecyl sulphate gel electrophoresis. Gel patterns were compared for cells labelled via galactose oxidase and B3H4 or lactoperoxidase and radioactive iodide. The results suggest that PhaR cells are altered in the carbohydrate portion of a number of their membrane glycoproteins.  相似文献   

20.
Synopsis The three major types of glycoproteins present in animal cells, that is, the secretory, lysosomal and plasma membrane glycoproteins, were examined with regard to the sites of synthesis of their carbohydrate side chains and to their subsequent migration within cells.The site at which a monosaccharide is added to a growing glycoprotein depends on the position of that monosaccharide in the carbohydrate side-chain. Thus, radiauutography of thyroid cells within minutes of the intravenous injection of labelled mannose, a sugar located near the base of the larger side-chains, reveals that it is incorporated in rough endoplasmic reticulum, whereas the more distally located galactose and fucose are incorporated in the Golgi apparatus. Recently [3H]N-acetylmannosamine, a specific precursor for the terminally located sialic acid residues, was shown to be also added in the Golgi apparatus. Presumably synthesis of glycoproteins is completed in this organelle.Radioautographs of animals sacrificed a few hours after injection of [3H]N-acetylmannosamine show that, in many secretory cells, labelled glycoproteins pass into secretory products. In these cells, as well as in non-secretory cells, the label may also appear within lysosomes and at the cell surface. In the latter site, it is presumably included within the plasma membrane glycoproteins whose carbohydrate side-chains form the cell coat. The continual migration of glycoproteins from Golgi apparatus to cell surface implies turnover of plasma membrane glycoproteins. Radioautographic quantitation of [3H]fucose label at the surface of proximal tubule cells in the kidney of singly-injected adult mice have shown that, after an initial peak, cell surface labelling decreases at a rate indicating a half-life of plasma membrane glycoproteins of about three days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号