首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The seven rRNA operons in Escherichia coli each contain two promoters, rrn P1 and rrn P2. Most previous studies have focused on the rrn P1 promoters. Here we report a systematic analysis of the activity and regulation of the rrnB P2 promoter in order to define the intrinsic properties of rrn P2 promoters and to understand better their contributions to rRNA synthesis when they are in their natural setting downstream of rrn P1 promoters. In contrast to the conclusions reached in some previous studies, we find that rrnB P2 is regulated: it displays clear responses to amino acid availability (stringent control), rRNA gene dose (feedback control), and changes in growth rate (growth rate-dependent control). Stringent control of rrnB P2 requires the alarmone ppGpp, but growth rate-dependent control of rrnB P2 does not require ppGpp. The rrnB P2 core promoter sequence (-37 to +7) is sufficient to serve as the target for growth rate-dependent regulation.  相似文献   

6.
7.
8.
Kinetic properties of rrn promoters in Escherichia coli   总被引:3,自引:0,他引:3  
Zhang X  Dennis P  Ehrenberg M  Bremer H 《Biochimie》2002,84(10):981-996
  相似文献   

9.
The control of ribosome synthesis has been a major focus in molecular biology for over 50 years. As protein synthesis is an essential, yet energetically costly, process, all cells (from bacteria to mammals) devote complex regulatory networks to fine-tune the expression of ribosomal RNA (and therefore ribosome synthesis) to the nutritional environment. In Escherichia coli, ribosomal RNA promoters are among the strongest in the cell and are regulated by trans-acting proteins (Fis and H-NS) and small molecules (guanosine 5'-diphosphate 3'-diphosphate and initiating nucleoside triphosphates). Recent work has dissected many of the molecular mechanisms responsible for the strength and regulation of rRNA promoters.  相似文献   

10.
11.
12.
13.
Guanosine 3'-diphosphate 5'-diphosphate (ppGpp) selectively reduces the synthesis of su+III tRNA from omega 80 psu+III DNA relative to the synthesis of omega 80 RNA in a system in vitro containing DNA and Escherichia coli RNA polymerase holoenzyme as the sole macromolecular components. The response of su+III tRNA synthesis to increasing salt and to temperature in the presence of ppGpp suggests that the nucleotide may reduce the affinity of the enzyme for su+III promoters. The Ki for the selective inhibition of tRNA synthesis by ppGpp is 4 muM in contrast to the value of 150 muM for the inhibition of rRNA synthesis.  相似文献   

14.
15.
The effects of extra, plasmid-borne rRNA genes on the synthesis rate of rRNA in Escherichia coli were examined by measuring the fraction of total RNA synthesis that is rRNA and tRNA (rs/rt), the cytoplasmic concentration of guanosine tetraphosphate (ppGpp), and the absolute rates of RNA and protein synthesis. Experiments were carried out in different growth media and with two different strains of E. coli, B/r and K-12. The results indicated: 1) increased rrn gene dosage from either intact or defective rrn genes reduced bacterial growth rates and ribosome activity (protein synthesis rate/average ribosome), and increased rs/rt. 2) Extra intact, but not extra defective, plasmid-borne rrn genes caused the level of ppGpp to be increased in comparison to the pBR322-carrying control strain. 3) As a function of ppGpp, rs/rt was increased with either intact or defective rrn genes. 4) The rRNA synthesis rate/rrn gene was reduced in the presence of extra rrn genes; this reduction in gene activity was greater with intact than with defective rrn genes. An analysis of these results showed that they are consistent with the ppGpp hypothesis of rRNA control but not with a feedback effector role of translating ribosomes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号