首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreasing photobleaching by silver island films: application to muscle   总被引:1,自引:0,他引:1  
Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule-typically of the order of attoliters (10(-18) L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high. This calls for a large illuminating light flux, which in turn leads to rapid photobleaching of the fluorophores that are labeling the proteins. To decrease photobleaching, we measured fluorescence from a sample placed on coverslips coated with silver island films (SIF). SIF reduce photobleaching because they enhance fluorescence brightness and significantly decrease fluorescence lifetime. Increase in the brightness effectively decreases photobleaching because illumination can be attenuated to obtain the same fluorescence intensity. Decrease of lifetime decreases photobleaching because short lifetime minimizes the probability of oxygen attack while the fluorophore is in the excited state. The decrease of photobleaching was demonstrated in skeletal muscle. Myofibrils were labeled lightly with rhodamine-phalloidin, placed on coverslips coated with SIF, illuminated by total internal reflection, and observed through a confocal aperture. We show that SIF causes the intensity of phalloidin fluorescence to increase 4-5 fold and its fluorescence lifetime to decrease on average 23-fold. As a consequence, the rate of photobleaching of four or five molecules of actin of a myofibril on Olympus coverslips coated with SIF decreased at least 30-fold in comparison with photobleaching on an uncoated coverslip. Significant decrease of photobleaching makes the measurement of signal from a single cross-bridge of contracting muscle feasible.  相似文献   

2.
We report theoretical predictions and experimental observations of the reduced detection volume with the use of surface-plasmon-coupled emission (SPCE). The effective fluorescence volume (detection volume) in SPCE experiments depends on two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. With direct excitation of the sample (reverse Kretschmann excitation) the detection volume is restricted only by the distance-dependent coupling of the excitation to the surface plasmons. However, with the excitation through the glass prism at surface plasmon resonance angle (Kretschmann configuration), the detection volume is a product of evanescent wave penetration depth and distance-dependent coupling. In addition, the detection volume is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10nm). The height of the detected volume size is 40-70nm, depending on the orientation of the excited dipoles. We show that, by using the Kretschmann configuration in a microscope with a high-numerical-aperture objective (1.45) together with confocal detection, the detection volume can be reduced to 1-2attoL. The strong dependence of the coupling to the surface plasmons on the orientation of excited dipoles can be used to study the small conformational changes of macromolecules.  相似文献   

3.
The ability to measure properties of a single cross-bridge in working muscle is important because it avoids averaging the signal from a large number of molecules and because it probes cross-bridges in their native crowded environment. Because the concentration of myosin in muscle is large, observing the kinetics of a single myosin molecule requires that the signal be collected from small volumes. The introduction of small observational volumes defined by diffraction-limited laser beams and confocal detection has made it possible to limit the observational volume to a femtoliter (10(-15) liter). By restraining labeling to 1 fluorophore per 100 myosin molecules, we were able to follow the kinetics of approximately 400 cross-bridges. To reduce this number further, we used two-photon (2P) microscopy. The focal plane in which the laser power density was high enough to produce 2P absorption was thinner than in confocal microscopy. Using 2P microscopy, we were able to observe approximately 200 cross-bridges during contraction. The novel method of confocal total internal reflection (CTIR) provides a method to reduce the observational volume even further, to approximately 1 attoliter (10(-18) liter), and to measure fluorescence with a high signal-to-noise (S/N) ratio. In this method, the observational volume is made shallow by illuminating the sample with an evanescent field produced by total internal reflection (TIR) of the incident laser beam. To guarantee the small lateral dimensions of the observational volume, a confocal aperture is inserted in the conjugate-image plane of the objective. With a 3.5-mum confocal aperture, we achieved a volume of 1.5 attoliter. Association-dissociation of the myosin head was probed with rhodamine attached at cys707 of the heavy chain of myosin. Signal was contributed by one to five fluorescent myosin molecules. Fluorescence decayed in a series of discrete steps, corresponding to bleaching of individual molecules of rhodamine. The S/N ratio was sufficiently large to make statistically significant comparisons from rigor and contracting myofibrils.  相似文献   

4.
Campbell KS 《Biophysical journal》2006,91(11):4102-4109
Spatially explicit stochastic simulations of myosin S1 heads attaching to a single actin filament were used to investigate the process of force development in contracting muscle. Filament compliance effects were incorporated by adjusting the spacing between adjacent actin binding sites and adjacent myosin heads in response to cross-bridge attachment/detachment events. Appropriate model parameters were determined by multi-dimensional optimization and used to simulate force development records corresponding to different levels of Ca(2+) activation. Simulations in which the spacing between both adjacent actin binding sites and adjacent myosin S1 heads changed by approximately 0.06 nm after cross-bridge attachment/detachment events 1), exhibited tension overshoots with a Ca(2+) dependence similar to that measured experimentally and 2), mimicked the observed k(tr)-relative tension relationship without invoking a Ca(2+)-dependent increase in the rate of cross-bridge state transitions. Tension did not overshoot its steady-state value in control simulations modeling rigid thick and thin filaments with otherwise identical parameters. These results underline the importance of filament geometry and actin binding site availability in quantitative theories of muscle contraction.  相似文献   

5.
If the subfragment-2 (S2) portion of the myosin cross-bridge to actin does not lie parallel to the myofilament axes then when a muscle fiber contracts, there will be a radial component to the cross-bridge force. When the subfragment-1 (S1) portion of the cross-bridge attaches to actin with its long axis projecting through the filament axis, the magnitude of the radial force depends upon the azimuthal location of the actin site, but when the attachment of the S1 to actin is slewed, as in the reconstruction of Moore et al. (J. Mol. Biol., 1970, 50:279-294), then for a single cross-bridge the radial component of the cross-bridge force is not quite so sensitive to actin site location and is approximately 0.1 the axial component. In both cases, the ratio of the radial to axial force decreases with decreasing filament separation. If the radial-axial force ratio for each cross-bridge is approximately 0.1, then at full overlap in a frog skeletal muscle fiber the radial component of the cross-bridge force accompanying full activation will exert a compressive pressure of approximately 5 X 10(-3) atm. This would have little effect upon an intact muscle fiber where the volume constraints are likely osmotic, but it might produce a 1-2% change in filament spacing in a "skinned" muscle fiber from which the sarcolemma had been removed. These computations assume that the S2 link between the S1 head and the myosin filament does not support a bending moment of shear. If it does, then the radial component of the cross-bridge will be either greater or less, depending on the specific cross-bridge geometry.  相似文献   

6.
Myosin is the molecular motor in muscle-binding actin and executing a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. A green fluorescent protein (GFP)-tagged human cardiac myosin regulatory light chain (HCRLC) was constructed to study in situ lever arm orientation one molecule at a time by polarized fluorescence emitted from the GFP probe. The recombinant protein physically and functionally replaced the native RLC on myosin lever arms in the thick filaments of permeabilized skeletal muscle fibers. Detecting single molecules in fibers where myosin concentration reaches 300 microM is accomplished using total internal reflection fluorescence microscopy. With total internal reflection fluorescence, evanescent field excitation, supercritical angle fluorescence detection, and CCD detector pixel size limits detection volume to just a few attoliters. Data analysis manages both the perturbing effect of the TIR interface on probe emission and the effect of high numerical aperture collection of light. The natural myosin concentration gradient in a muscle fiber allows observation of fluorescence polarization from C-term GFP-tagged HCRLC exchanged myosin from regions in the thick filament containing low and high myosin concentrations. In rigor, cross-bridges at low concentration at the end of the thick filament maintain GFP dipole moments at two distinct polar angles relative to the fiber symmetry axis. The lower angle, where the dipole is nearly parallel to fiber axis, is more highly populated than the alternative, larger angle. Cross-bridges at higher concentration in the center of the thick filament are oriented in a homogeneous band at approximately 45 degrees to the fiber axis. The data suggests molecular crowding impacts myosin conformation, implying mutual interactions between cross-bridges alter how the muscle generates force. The GFP-tagged RLC is a novel probe to assess single-lever-arm orientation characteristics in situ.  相似文献   

7.
We have developed a surface plasmon resonance (SPR) system to monitor the cross-bridge attachment/detachment process within intact sarcomeres from mouse heart muscle. SPR occurs when laser light energy is transferred to surface plasmons that are resonantly excited in a metal (gold) film. This resonance manifests itself as a minimum in the reflection of the incident laser light and occurs at a characteristic angle. The angle of the SPR occurrence depends on the dielectric permittivity of the sample medium adjacent to the gold film. Purified sarcomeric preparations are immobilized onto the gold film in the presence of a relaxing solution. Replacement of the relaxing solution with increasing Ca(2+) concentration solution activates the cross-bridge interaction and produces an increase in the SPR angle. These results imply that the interaction of myosin heads with actin within an intact sarcomere changes the dielectric permittivity of the sarcomeric structure. In addition, we further verify that SPR measurements can detect the changes in the population of the attached cross-bridges with altered concentrations of phosphate, 2,3-butanedione monoxime, or adenosine triphosphate at a fixed calcium concentration, which have been shown to reduce the force and increase the cross-bridge population in attached state. Thus, our data provide the first evidence that the SPR technique allows the monitoring of the cross-bridge attachment/detachment process within intact sarcomeres.  相似文献   

8.
It is well documented that muscle contraction results from cyclic rotations of actin-bound myosin cross-bridges. The role of actin is hypothesized to be limited to accelerating phosphate release from myosin and to serving as a rigid substrate for cross-bridge rotations. To test this hypothesis, we have measured actin rotations during contraction of a skeletal muscle. Actin filaments of rabbit psoas fiber were labeled with rhodamine-phalloidin. Muscle contraction was induced by a pulse of ATP photogenerated from caged precursor. ATP induced a single turnover of cross-bridges. The rotations were measured by anisotropy of fluorescence originating from a small volume defined by a narrow aperture of a confocal microscope. The anisotropy of phalloidin-actin changed rapidly at first and was followed by a slow relaxation to a steady-state value. The kinetics of orientation changes of actin and myosin were the same. Extracting myosin abolished anisotropy changes. To test whether the rotation of actin was imposed by cross-bridges or whether it reflected hydrolytic activity of actin itself, we labeled actin with fluorescent ADP. The time-course of anisotropy change of fluorescent nucleotide was similar to that of phalloidin-actin. These results suggest that orientation changes of actin are caused by dissociation and rebinding of myosin cross-bridges, and that during contraction, nucleotide does not dissociate from actin.  相似文献   

9.
Previous work has shown that there are significant differences in the X-ray diffraction patterns obtained from relaxed and contracting muscles. We show that some of these changes can be explained in terms of a small movement (~ 5 to 15 Å) of the tropomyosin molecules in the groove of the actin helix. The position of the tropomyosin in relaxed skeletal muscle is such that it might physically block or at least structurally alter the cross-bridge attachment site on actin, whereas in contracting skeletal muscle the tropomyosin moves to a position well clear of the attachment site. The movement of the tropomyosin molecules is apparently smaller in molluscan muscles during tonic contraction than in vertebrate skeletal muscle. We suggest a possible relationship between the smaller movement of the tropomyosin and the “catch” response of molluscan muscles.We also show that any increase of intensity on the 59 Å and 51 Å layer-lines is most likely to be associated with some extra mass (HMM S-1) attaching to the actin molecules. Such a change cannot be explained in terms of a change in tropomyosin structure or in the order within the thin filaments. Since changes on these two layer-lines have been observed during contraction, this provides good evidence for cross-bridge attachment to actin in contracting muscles.  相似文献   

10.
Variation in the concentration of orthophosphate (Pi) in actively contracting, chemically skinned muscle fibers has proved to be a useful probe of actomyosin interaction. Previous studies have shown that isometric tension (Po) decreases linearly in the logarithm of [Pi] for [Pi] > or = 200 microM. This result can be explained in terms of cross-bridge models in which the release of Pi is involved in the transition from a weakly bound, low-force actin x myosin x ADP x Pi state to a strongly bound, high-force, actin x myosin x ADP state. The 200 microM minimum [Pi] examined results from an inability to buffer the intrafiber, diffusive buildup of Pi resulting from the fiber ATPase. In the present study, we overcome this limitation by employing the enzyme purine nucleoside phosphorylase with substrate 7-methylguanosine to reduce the calculated internal [Pi] in contracting rabbit psoas fibers to < 5 microM. At 10 degrees C we find that Po continues to increase as the [Pi] decreases for [Pi] > or = 100 microM. Below this [Pi], Po is approximately constant. These results indicate that the free energy drop in the cross-bridge powerstroke is approximately 9 kT. This value is shown to be consistent with observations of muscle efficiency at physiological temperatures.  相似文献   

11.
To characterize the kinetics of cross-bridge attachment to actin during unloaded contraction (maximum velocity of filament sliding), ramp-shaped stretches with different stretch-velocities (2-40,000 nm per half-sarcomere per s) were applied to actively contracting skinned fibers of the rabbit psoas muscle. Apparent fiber stiffness observed during such stretches was plotted versus the speed of the imposed stretch (stiffness-speed relation) to derive the rate constants for cross-bridge dissociation from actin. The stiffness-speed relation obtained for unloaded shortening conditions was shifted by about two orders of magnitude to faster stretch velocities compared to isometric conditions and was almost identical to the stiffness-speed relation observed in the presence of MgATPgammaS at high Ca(2+) concentrations, i.e., under conditions where cross-bridges are weakly attached to the fully Ca(2+) activated thin filaments. These data together with several control experiments suggest that, in contrast to previous assumptions, most of the fiber stiffness observed during high-speed shortening results from weak cross-bridge attachment to actin. The fraction of strongly attached cross-bridges during unloaded shortening appears to be as low as some 1-5% of the fraction present during isometric contraction. This is about an order of magnitude less than previous estimates in which contribution of weak cross-bridge attachment to observed fiber stiffness was not considered. Our findings imply that 1) the interaction distance of strongly attached cross-bridges during high-speed shortening is well within the range consistent with conventional cross-bridge models, i.e., that no repetitive power strokes need to be assumed, and 2) that a significant part of the negative forces that limit the maximum speed of filament sliding might originate from weak cross-bridge interactions with actin.  相似文献   

12.
In muscle contraction, it has been widely recognized that a binding state exists between myosin and actin in the presence of Mg-ATP. To estimate the magnitude of binding strength, I introduce a concept of frictional phenomena which occurs between two sliding bodies in contact each other. In such cases, the sliding speed can be formulated as a function of the actin-myosin bond strength. In order to validate this, the present theory is applied for the two movement assay systems with no external load; one movement assay of Phalloidin Rhodamine bound F-actin on a myosin coated hydrophobic cover glass and another assay of myosin coated beads along actin cables of Nitella. If a coefficient of 0.005 is applied to the kinetic friction, 1pN for the sliding force per cross-bridge and 10 microns sec-1 for the sliding speed, it is found that the bond strength between actin and one myosin head is about 200 pN in the contracting state.  相似文献   

13.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

14.
A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20-250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal-sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences.  相似文献   

15.
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.  相似文献   

16.
We demonstrate broad-field, non-scanning, two-photon excitation fluorescence (2PEF) close to a glass/cell interface by total internal reflection of a femtosecond-pulsed infrared laser beam. We exploit the quadratic intensity dependence of 2PEF to provide non-linear evanescent wave (EW) excitation in a well-defined sample volume and to eliminate scattered background excitation. A simple model is shown to describe the resulting 2PEF intensity and to predict the effective excitation volume in terms of easily measurable beam, objective and interface properties. We demonstrate non-linear evanescent wave excitation at 860 nm of acridine orange-labelled secretory granules in live chromaffin cells, and excitation at 900 nm of TRITC-phalloidin-actin/GPI-GFP double-labelled fibroblasts. The confined excitation volume and the possibility of simultaneous multi-colour excitation of several fluorophores make EW 2PEF particularly advantageous for quantitative microscopy, imaging biochemistry inside live cells, or biosensing and screening applications in miniature high-density multi-well plates.Abbreviations 1PEF one-photon excited fluorescence - 2PEF two-photon excited fluorescence - APD avalanche photo diode - CHO Chinese hamster ovary - DMEM Dulbecco's modified Eagle's medium - EGFP enhanced green fluorescent protein - EW evanescent wave - FCS fetal calf serum - GPI glycosylphosphatidylinositol - TIR total internal reflectionThis paper is dedicated to the memory of Prof. Horst Harreis (1940–2002)  相似文献   

17.
Shepard A  Borejdo J 《Biochemistry》2004,43(10):2804-2811
The conventional hypothesis of muscle contraction postulates that the interaction between actin and myosin involves tight coupling between the power stroke and hydrolysis of ATP. However, some in vitro experiments suggested that hydrolysis of a single molecule of ATP caused multiple mechanical cycles. To test whether the tight coupling is present in contracting muscle, we simultaneously followed mechanical and enzymatic events in a small population of cross-bridges of glycerinated rabbit psoas fibers. Such small population behaves as a single cross-bridge when muscle contraction is initiated by a sudden release of caged ATP. Mechanical events were measured by changes of orientation of probes bound to the regulatory domain of myosin. Enzymatic events were simultaneously measured from the same cross-bridge population by the release of fluorescent ADP from the active site. If the conventional view were true, ADP desorption would occur simultaneously with dissociation of cross-bridges from thin filaments and would be followed by cross-bridge rebinding to thin filaments. Such sequence of events was indeed observed in contracting muscle fibers, suggesting that mechanical and enzymatic events are tightly coupled in vivo.  相似文献   

18.
Wang X  Teng Y  Wang Q  Li X  Sheng X  Zheng M  Samaj J  Baluska F  Lin J 《Plant physiology》2006,141(4):1591-1603
Evanescent wave excitation was used to visualize individual, FM4-64-labeled secretory vesicles in an optical slice proximal to the plasma membrane of Picea meyeri pollen tubes. A standard upright microscope was modified to accommodate the optics used to direct a laser beam at a variable angle. Under evanescent wave microscopy or total internal reflection fluorescence microscopy, fluorophores localized near the surface were excited with evanescent waves, which decay exponentially with distance from the interface. Evanescent waves with penetration depths of 60 to 400 nm were generated by varying the angle of incidence of the laser beam. Kinetic analysis of vesicle trafficking was made through an approximately 300-nm optical section beneath the plasma membrane using time-lapse evanescent wave imaging of individual fluorescently labeled vesicles. Two-dimensional trajectories of individual vesicles were obtained from the resulting time-resolved image stacks and were used to characterize the vesicles in terms of their average fluorescence and mobility, expressed here as the two-dimensional diffusion coefficient D2. The velocity and direction of vesicle motions, frame-to-frame displacement, and vesicle trajectories were also calculated. Analysis of individual vesicles revealed for the first time, to our knowledge, that two types of motion are present, and that vesicles in living pollen tubes exhibit complicated behaviors and oscillations that differ from the simple Brownian motion reported in previous investigations. Furthermore, disruption of the actin cytoskeleton had a much more pronounced effect on vesicle mobility than did disruption of the microtubules, suggesting that actin cytoskeleton plays a primary role in vesicle mobility.  相似文献   

19.
K Ajtai  T P Burghardt 《Biochemistry》1986,25(20):6203-6207
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
During active muscle contraction, tension is generated through many simultaneous, independent interactions between the molecular motor myosin and the actin filaments. The ensemble of myosin motors displays heterogeneous conformations reflecting different mechanochemical steps of the ATPase pathway. We used electron tomography of actively contracting insect flight muscle fast-frozen, freeze substituted, Araldite embedded, thin-sectioned and stained, to obtain 3D snapshots of the multiplicity of actin-attached myosin structures. We describe procedures for alignment of the repeating lattice of sub-volumes (38.7 nm cross-bridge repeats bounded by troponin) and multivariate data analysis to identify self-similar repeats for computing class averages. Improvements in alignment and classification of repeat sub-volumes reveals (for the first time in active muscle images) the helix of actin subunits in the thin filament and the troponin density with sufficient clarity that a quasiatomic model of the thin filament can be built into the class averages independent of the myosin cross-bridges. We show how quasiatomic model building can identify both strong and weak myosin attachments to actin. We evaluate the accuracy of image classification to enumerate the different types of actin–myosin attachments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号