首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-Hydroxybenzaldehyde (HBA) derivatives were examined as inhibitors for GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Investigation of structure-activity relation revealed that a carbonyl group or an amino group as well as a hydroxy group at the para position of the benzene ring are important for both enzymes' inhibition. HBA was shown to give competitive inhibition of GABA-T with respect to alpha-ketoglutarate and competitive inhibition of SSADH. 4-Hydroxybenzylamine (HBM) also showed the competitive inhibition on GABA-T with respect to GABA. In conclusion, the inhibitory effects of HBA and HBM on both enzymes could result from the similarity between both molecules and the two enzymes' substrates in structure, as well as the conjugative effect of the benzene ring. This suggested that the presence of the benzene ring may be accepted by the active site of both enzymes, HBA and HBM may be considered as lead compounds to design novel GABA-T inhibitors.  相似文献   

2.
Bacterial Degradation of Diphenylmethane, a DDT Model Substrate   总被引:7,自引:5,他引:2       下载免费PDF全文
A strain of Hydrogenomonas was isolated by elective culture in a solution with diphenylmethane, an analogue of DDT, as the sole carbon source. Constitutive enzymes effected the oxidation and fission of one of the benzene rings of diphenylmethane, and phenylacetic acid was found as a major degradation product. Small amounts of phenylglyoxylic and benzoic acids were also generated from diphenylmethane by the bacterium. Phenylacetic acid, which contains the second benzene ring of diphenylmethane, was metabolized by inducible enzymes.  相似文献   

3.
Sulfur metabolism in bacteria associated with cheese   总被引:1,自引:0,他引:1  
Metabolism of sulfur in bacteria associated with cheese has long been a topic of interest. Volatile sulfur compounds, specifically methanethiol, are correlated to desirable flavor in Cheddar cheese, but their definitive role remains elusive. Only recently have enzymes been found that produce this compound in bacteria associated with cheese making. Cystathionine - and -lyase are found in lactic acid bacteria and are capable of producing methanethiol from methionine. Their primary function is in the metabolism of cysteine. Methionine -lyase produces methanethiol from methionine at a higher efficiency than the cystathionine enzymes. This enzyme is found in brevibacteria, bacilli, and pseudomonads. Addition of brevibacteria containing this enzyme improves Cheddar cheese flavor. Despite recent progress in sulfur metabolism more information is needed before cheese flavor associated with sulfur can be predicted or controlled.  相似文献   

4.
采用量子化学方法,在DFT/B3LYP/6-31G*基组水平上对肼基单胺氧化酶抑制剂进行了几何构型优化和电子结构计算.根据计算结果,分析了肼基单胺氧化酶抑制剂的抑制活性与电子结构的构效关系,结果表明,肼基单胺氧化酶抑制剂衍生物的活性与最低空轨道的能量ELUMO与最高占据轨道的能量EHOMO的差值、分子偶极矩和苯环上5位碳原子电荷密度有显著相关性.  相似文献   

5.
Dearomatizing benzene ring reductases   总被引:1,自引:0,他引:1  
The high resonance energy of the benzene ring is responsible for the relative resistance of aromatic compounds to biodegradation. Nevertheless, bacteria from nearly all physiological groups have been isolated which utilize aromatic growth substrates as the sole source of cell carbon and energy. The enzymatic dearomatization of the benzene nucleus by microorganisms is accomplished in two different manners. In aerobic bacteria the aromatic ring is dearomatized by oxidation, catalyzed by oxygenases. In contrast, anaerobic bacteria attack the aromatic ring by reductive steps. Key intermediates in the anaerobic aromatic metabolism are benzoyl-CoA and compounds with at least two meta-positioned hydroxyl groups (resorcinol, phloroglucinol and hydroxyhydroquinone). In facultative anaerobes, the reductive dearomatization of the key intermediate benzoyl-CoA requires a stoichiometric coupling to ATP hydrolysis, whereas reduction of the other intermediates is readily achieved with suitable electron donors. Obligately anaerobic bacteria appear to use a totally different enzymology for the reductive dearomatization of benzoyl-CoA including selenocysteine- and molybdenum- containing enzymes.  相似文献   

6.
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in 'Birch-like' reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., -1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

7.
In the course of screening tests of Basidiomycete proteolytic enzymes, it was observed that some strains produced milk clotting enzymes with fairly weak proteolytic activities.

When sucrose-polypeptone and sucrose-corn steep liquor media were used, only 6 strains out of 44 strains tested showed weak milk clotting activities. Cheddar cheese making with culture filtrates of these 6 strains revealed that the culture filtrates of 2 strains, Irpex lacteus Fr. and Fomitopsis pinicola (Fr.) Karst., were able to produce Cheddar cheese of good quality.

On the other hand, when sucrose-distillers solubles media were used, a lot of strains showed high proteolytic activity in addition to high milk clotting activity. The ratio of milk clotting to proteolytic activities (MCA/PA) was assumed to be an important index for the selection of organism, and F. pinicola and Coriolus consors (Berk.) Imaz. were selected as the strain with high MCA/PA ratio.

As the investigation on culture conditions of 3 strains mentioned above showed that F. pinicola and I. lacteus, were richly productive of milk clotting enzymes, the 2 strains except C. consors were used for further studies on cheese making.

Cheddar cheese making with crude enzymes revealed that cheese products produced by the enzyme of F. pinicola had a slightly bitter taste after 5 months’ ripening but that those produced by the enzyme of I. lacteus had good quality.  相似文献   

8.
9.
Matthias Boll 《BBA》2005,1707(1):34-50
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in ‘Birch-like’ reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., −1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.  相似文献   

10.
Coq6 is an enzyme involved in the biosynthesis of coenzyme Q, a polyisoprenylated benzoquinone lipid essential to the function of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, this putative flavin-dependent monooxygenase is proposed to hydroxylate the benzene ring of coenzyme Q (ubiquinone) precursor at position C5. We show here through biochemical studies that Coq6 is a flavoprotein using FAD as a cofactor. Homology models of the Coq6-FAD complex are constructed and studied through molecular dynamics and substrate docking calculations of 3-hexaprenyl-4-hydroxyphenol (4-HP6), a bulky hydrophobic model substrate. We identify a putative access channel for Coq6 in a wild type model and propose in silico mutations positioned at its entrance capable of partially (G248R and L382E single mutations) or completely (a G248R-L382E double-mutation) blocking access to the channel for the substrate. Further in vivo assays support the computational predictions, thus explaining the decreased activities or inactivation of the mutated enzymes. This work provides the first detailed structural information of an important and highly conserved enzyme of ubiquinone biosynthesis.  相似文献   

11.
Low pH and salt are two factors contributing to the inactivation of bacterial pathogens during a 60-day curing period for cheese. The kinetics of inactivation for Mycobacterium avium subsp. paratuberculosis strains ATCC 19698 and Dominic were measured at 20 degrees C under different pH and NaCl conditions commonly used in processing cheese. The corresponding D values (decimal reduction times; the time required to kill 1 log(10) concentration of bacteria) were measured. Also measured were the D values for heat-treated and nonheated M. avium subsp. paratuberculosis in 50 mM acetate buffer (pH 5.0, 2% [wt/vol] NaCl) and a soft white Hispanic-style cheese (pH 6.0, 2% [wt/vol] NaCl). Samples were removed at various intervals until no viable cells were detected using the radiometric culture method (BACTEC) for enumeration of M. avium subsp. paratuberculosis. NaCl had little or no effect on the inactivation of M. avium subsp. paratuberculosis, and increasing NaCl concentrations were not associated with decreasing D values (faster killing) in the acetate buffer. Lower pHs, however, were significantly correlated with decreasing D values of M. avium subsp. paratuberculosis in the acetate buffer. The D values for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese were higher than those predicted by studies done in acetate buffer. The heat-treated M. avium subsp. paratuberculosis strains had lower D values than the nonheated cells (faster killing) both in the acetate buffer (pH 5, 2% [wt/vol] NaCl) and in the soft white cheese. The D value for heat-treated M. avium subsp. paratuberculosis ATCC 19698 in the cheese (36.5 days) suggests that heat treatment of raw milk coupled with a 60-day curing period will inactivate about 10(3) cells of M. avium subsp. paratuberculosis per ml.  相似文献   

12.
The interaction between free radicals derived from the catalytic decomposition of carbon tetrachloride and tyrosine (the N-acetyl tyrosine ethyl ester, ATEE) under anaerobic and aerobic conditions was studied. The structure of the reaction products formed was desciphered by the GLC/MS analysis of their trimethylsilyl derivatives. Under anaerobic conditions the formation of the following products was found: (1) an unsaturated derivative of the amino acid; (2) the trimethylsilyl derivative of N-acetyl chloro tyrosine ethyl ester; (3) a hydroxyl adduct of ATEE ; (4) an ATEE adduct having a chlorine and a CCl3 group in the molecule (it is suggested that CCl3 is attached to the benzyl carbon and the chlorine located in the benzene ring); (5) an ATEE adduct having only a CCl3 group tentatively assigned to be located on the benzyl carbon; and (6) and (7) were found to be two isomers of an ATEE having one CCl3 on the aromatic ring. Under aerobic conditions the following reaction products were identified: Two products which were similar to those numbered (1) and (2) and formed anaerobically; (8) and (11) two isomeric dichlorinated adducts of ATEE; (9) and (10) two isomeric dichlorinated monohydroxylated derivatives of ATEE. Concerning the potential relevance of these findings, we consider that if similar interactions to those here reported occurred during CCl4 poisoning, the activity of enzymes having tyrosine in their active center might result in impairment. Further, enzymes operating on tyrosine moieties in proteins might be perturbed in their action if tyrosine groups were attacked by the free radicals arising from catalytic decomposition of CCl4 evidenced here.  相似文献   

13.
A 2-l (1-l working volume) two-phase partitioning bioreactor (TPPB) was used as an integrated scrubber/bioreactor in which the removal and destruction of benzene from a gas stream was achieved by the reactor's organic/aqueous liquid contents. The organic solvent used to trap benzene was n-hexadecane, and degradation of benzene was achieved in the aqueous phase using the bacterium Alcaligenes xylosoxidans Y234. A gas stream with a benzene concentration of 340 mg l(-1) at a flow rate of 0.414 l h(-1) was delivered to the system at a loading capacity of 140 g m(-3) h(-1), and an elimination capacity of 133 g m(-3 )h(-1) was achieved (the volume in this term is the total liquid volume of the TPPB). This elimination capacity is between 3 and 13 times greater than any benzene elimination achieved by biofiltration, a competing biological air treatment strategy. It was also determined that the evaluation of TPPB performance in terms of elimination capacity should include the cell mass present in the system, as this is a readily controllable quantity. A specific benzene utilization rate of 0.57 g benzene (g cells)(-1) h(-1) was experimentally determined in a bioreactor with a cell concentration that varied dynamically between 0.2 and 1 g l(-1). If it assumed that this specific benzene utilization rate (0.57 g g(-1) h(-1)) is independent of cell concentration, then a TPPB operated at high cell concentrations could potentially achieve elimination capacities several hundred times greater than those obtained with biofilters.  相似文献   

14.
Samples of butter, cream, and white cheese were collected from the city of Ismailia, Egypt, and analyzed for polychloro dibenzo-p-dioxins, pentachloro dibenzo-p-furans, and dioxin-like polychlorinated biphenyl, PCBs. Butter samples had the highest mean content of PCDD/F and dioxin-like PCBs. Butter samples were the most contaminated samples in all dairy products analyzed in this study, whereas white cheese samples were the least contaminated. The spectrum of congeners detected in butter and cream were similar, with all congeners at detectable levels, whereas the spectrum of congeners detected in white cheese differed, with some congeners, namely 1,2,3,4,7,8-Hexa CDD, 1,2,3,4,6,7,8-Hepta CDD, and 1,2,3,7,8,9-Hexa CDD below WHO TE toxicity levels. 1,2,3,7,7-PeCDD, with its high concentration, was the principal contributor to the TEQ intake in both cream and butter samples. Similarly, the high concentration of 2,3,4,7,8-PeCDF in cream, butter, and white cheese samples was the main factor contributing to their TEQ intake. Estimated intakes of PCDDs/Fs were 129.2, 115.8, and 51.25 pg WHO-TEQ/day for butter, cream, and white cheese, respectively. Taking into account the sum of PCDDs/Fs and dioxin-like PCBs, estimated intakes were, 171.7, 155.8, and 68 pg WHO-TEQ/day, for butter, cream, and white cheese, respectively. Assuming an average bodyweight of 60 kg (WHO-TEQ/kg), these levels correspond to bodyweight-normalized intake levels of .15, 2.92 and 0.95 pg WHO-TEQ/kg/day.  相似文献   

15.
Acceleration of cheese ripening   总被引:14,自引:0,他引:14  
The characteristic aroma, flavour and texture of cheese develop during ripening of the cheese curd through the action of numerous enzymes derived from the cheese milk, the coagulant, starter and non-starter bacteria. Ripening is a slow and consequently an expensive process that is not fully predictable or controllable. Consequently, there are economic and possibly technological incentives to accelerate ripening. The principal methods by which this may be achieved are: an elevated ripening temperature, modified starters, exogenous enzymes and cheese slurries. The advantages, limitations, technical feasibility and commercial potential of these methods are discussed and compared.  相似文献   

16.
Enrichment cultures yielded two strains of Pseudomonas putida capable of growth with orcinol (3,5-dihydroxytoluene) as the sole source of carbon. Experiments with cell suspensions and cell extracts indicate that orcinol is metabolized by hydroxylation of the benzene ring followed successively by ring cleavage and hydrolyses to give 2 mol of acetate and 1 mol of pyruvate per mol of orcinol as shown: orcinol leads to 2,3,5-trihydroxytoluene leads to 2,4,6-trioxoheptanoate leads to acetate + acetylpyruvate leads to acetate + pyruvate. Evidence for this pathway is based on: (i) high respiratory activities of orcinol-grown cells towards 2,3,5-trihydroxytoluene; (ii) transient accumulation of a quinone, probably 2-hydroxy-6-methyl-1,4-benzoquinone, during grouth with orcinol; (iii) formation of pyruvate and acetate from orcinol, 2,3,5-trihydroxytoluene, and acetylpyruvate catalyzed by extracts of orcinol, but not by succinate-grown cells; (iv) characterization of the product of oxidation of 3-methylcatechol (an analogue of 2,3,5-trihydroxytoluene) showing that oxygenative cleavage occurs between carbons bearing methyl and hydroxyl substituents; (v) transient appearance of a compound having spectral properties similar to those of acetylpyruvate during 2,3,5-trihydroxytoluene oxidation by extracts of orcinol-grown cells. Orcinol hydroxylase exhibits catalytic activity when resorcinol or m-cresol is substituted for orcinol; hydroxyquinol and 3-methylcatechol are substrates for the ring cleavage enzyme 2,3,5-trihydroxytoluene-1,2-oxygenase. The enzymes of this pathway are induced by growth with orcinol but not with glucose or succinate.  相似文献   

17.
Biogenic amine-forming microbial communities in cheese   总被引:1,自引:0,他引:1  
The aim of this study was to screen two cheese starter cultures and cheese-borne microbial communities with the potential to produce biogenic amines in cheese during ripening. Bacteria of the genera Enterococcus and Lactobacillus and coliform bacteria were isolated from Dutch-type semi-hard cheese at the beginning of the ripening period. Statistically significant counts of bacterial isolates were screened for the presence of specific DNA sequences coding for tyrosine decarboxylase (tyrDC) and histidine decarboxylase (hDC) enzymes. The PCR analysis of DNA from 14 Enterococcus and 3 Lactobacillus isolates confirmed the presence of the targetted DNA sequences. Simultaneously, 13 tyrDC- and 3 hDC-positive isolates were grown in decarboxylase screening medium and this was followed by HPLC analysis of the produced tyramine and histamine. Conventional and molecular taxonomic analyses of the above-mentioned isolates identified the following species: Enterococcus durans (7 strains), Enterococcus faecalis (3 strains), Enterococcus faecium (1 strain), Enterococcus casseliflavus (3 strains), Lactobacillus curvatus (1 strain), Lactobacillus lactis (1 strain) and Lactobacillus helveticus (1 strain). All of the above Enterococcus and two of the Lactobacillus strains originated from contaminating microbial communities. The L. helveticus strain, which was tyrosine decarboxylase-positive and exhibited tyramine production, originated from starter culture 1 used for cheese production. Comparison of partial tyrDC sequences of positive Enterococcus isolates revealed 89% sequence similarity, and that of hDC-positive Lactobacillus isolates revealed 99% sequence similarity.  相似文献   

18.
The effect of electrostatic interactions on the absorption of the positively charged reversible inhibitor tetram-ethylammonium, its neutral structural analogue neopentane C(CH3)4, and the natural substrate acethylcholine to the active sites of acetylcholinesterase and butyrylcholinesterase has been studied by molecular modeling methods. It has been shown that the dominant absorption of positively charged ligands is due to the anchoring of the cationic group of the ligand in the anionic subsite of both enzymes through the interaction of the π-cation with the benzene ring of tryptophan. The correlation between the free energy of complex formation and the catalytic activity of charged tetramethylammonium has been revealed for both enzymes. It has been shown that the effective binding of the acetylcholine molecule requires the additional activation of the enzyme.  相似文献   

19.
Biotechnological methods to accelerate cheddar cheese ripening   总被引:1,自引:0,他引:1  
Cheese is one of the dairy products that can result from the enzymatic coagulation of milk. The basic steps of the transformation of milk into cheese are coagulation, draining, and ripening. Ripening is the complex process required for the development of a cheese's flavor, texture and aroma. Proteolysis, lipolysis and glycolysis are the three main biochemical reactions that are responsible for the basic changes during the maturation period. As ripening is a relatively expensive process for the cheese industry, reducing maturation time without destroying the quality of the ripened cheese has economic and technological benefits. Elevated ripening temperatures, addition of enzymes, addition of cheese slurry, attenuated starters, adjunct cultures, genetically engineered starters and recombinant enzymes and microencapsulation of ripening enzymes are traditional and modern methods used to accelerate cheese ripening. In this context, an up to date review of Cheddar cheese ripening is presented.  相似文献   

20.
In recent years, various studies in the field of industrial enzymes of biotechnology have gained importance due to increasing development in enzyme technology. The different areas where enzymes are used and their economic value of biotechnological products further increases their importance. There are hundreds of different types of cheese but each is made by coagulating milk using rennet to give curds. Today, researchers have begun to develop alternative systems in the cheese industry related to milk-clotting enzymes. In this study, the nucleic acid sequence encoding the optimized chymosin enzyme was used and cloned by Not I and Mlu I restriction enzymes into pTOLT vector system. Then using this construct, the enzyme as a fusion with Tol-A-III protein was produced in Escherichia coli BL21 (DE3) cells. After disrupting the E. coli cell and separating from the constituents by high speed centrifugation, the enzyme was purified by affinity chromatography and fractions were analyzed by SDS–PAGE. Purified enzyme has shown its activity. Optimum temperature and pH of CHY-Tol-A-III protein were 40°C and 6.5, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号