首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the isolation of a novel human gene, NSD1, from the 5q35 breakpoint of t(5;8)(q35; q24.1) in a patient with Sotos syndrome, and NSD1 mutation analysis. Of 112 (95 Japanese and 17 non-Japanese) patients analyzed, 16 (14%) had a heterozygous NSD1 point mutation (10 protein truncation types and six missense types) and 50 (45%) a approximately 0.7-Mb microdeletion involving NSD1. The results indicated that haploinsufficiency of NSD1 is the major cause of Sotos syndrome, and NSD1 plays a role in growth and brain development in humans. Detailed clinical examinations provided a genotype-phenotype correlation in Sotos syndrome, i.e. in patients with deletions, overgrowth is less obvious and mental retardation is more severe than in those with point mutations, and major anomalies were exclusively seen in the former. The results also indicated that Sotos syndrome due to a deletion falls into a contiguous gene syndrome, while Sotos syndrome due to an NSD1 point mutation is a single gene defect, occasionally with an autosomal dominant mode of inheritance. The genomic structure around the deleted and flanking regions revealed the presence of two sets of low copy repeats through which the microdeletion in Sotos syndrome is mediated.  相似文献   

2.
Mandibuloacral dysplasia (MAD) is a rare autosomal recessive disorder, characterized by postnatal growth retardation, craniofacial anomalies, skeletal malformations, and mottled cutaneous pigmentation. The LMNA gene encoding two nuclear envelope proteins (lamins A and C [lamin A/C]) maps to chromosome 1q21 and has been associated with five distinct pathologies, including Dunnigan-type familial partial lipodystrophy, a condition that is characterized by subcutaneous fat loss and is invariably associated with insulin resistance and diabetes. Since patients with MAD frequently have partial lipodystrophy and insulin resistance, we hypothesized that the disease may be caused by mutations in the LMNA gene. We analyzed five consanguineous Italian families and demonstrated linkage of MAD to chromosome 1q21, by use of homozygosity mapping. We then sequenced the LMNA gene and identified a homozygous missense mutation (R527H) that was shared by all affected patients. Patient skin fibroblasts showed nuclei that presented abnormal lamin A/C distribution and a dysmorphic envelope, thus demonstrating the pathogenic effect of the R527H LMNA mutation.  相似文献   

3.
This study identified mutations of the idumate-2-suffatase (IDS) gene in a patient with Hunter syndrome,and established a basis for the diagnosis of the prenatal gene of Hunter syndrome.Urine glyeosaminoglycan (GAG) assay was used to make the preliminary diagnosis of mucopolysaccharidosis type H.Polymerase chain reaction (PCR) from dried blood spots and DNA sequencing were applied to analyze hotspot mutations in exons 9,3 and 8 of the IDS gene in the proband and his parents.A new missense mutation (T1140C) in exon 8 of the IDS gene was found by using DNA sequencing.This mutation caused a substitution of codon 339 from CTA (leucine) to CCA (praline).The patient is a hemizygote,and his mother is a heterozygote.The new missense mutation results in a change in the primary and tertiary structure of the IDS protein.It is possible that this mutation severely impairs enzymatic activity and is the underlying basis for the pathology seen in this patient with Hunter syndrome.  相似文献   

4.
This study identified mutations of the idurnate-2-sulfatase (IDS) gene in a patient with Hunter syndrome, and established a basis for the diagnosis of the prenatal gene of Hunter syndrome. Urine glyeosaminoglycan (GAG) assay was used to make the preliminary diagnosis of mucopolysaccharidosis type II. Polymerase chain reaction (PCR) from dried blood spots and DNA sequencing were applied to analyze hotspot mutations in exons 9,3 and 8 of the IDS gene in the proband and his parents. A new missense mutation (T1140C) in exon 8 of the IDS gene was found by using DNA sequencing. This mutation caused a substitution of codon 339 from CTA (leucine) to CCA (praline). The patient is a hemizygote, and his mother is a heterozygote. The new missense mutation results in a change in the primary and tertiary structure of the IDS protein. It is possible that this mutation severely impairs enzymatic activity and is the underlying basis for the pathology seen in this patient with Hunter syndrome. __________ Translated from Hereditas, 2006, 28(5): 521–524 [译自: 遗传]  相似文献   

5.
郭奕斌  杜传书 《遗传》2006,28(5):521-524
应用尿黏多糖含量检测、干血滤纸片直接扩增、PCR产物直接测序法对患者及其父母等的IDS基因的突变热点exons9,3,8进行突变检测。发现患儿IDS基因的exon8发生一新的错义突变,突变部位在第339位密码子(CTA)内,即cDNA第1140bp的T突变为C,导致原339位的“亮氨酸CTA”突变为“脯氨酸CCA”。该患儿为这一突变的半合子,而其母为这一突变的杂合子。该错义突变改变了IDS酶的一级结构和三级空间结构,从而可能引起IDS酶活性大大降低,这可能是该Hunter综合征患者的真正致病原因。  相似文献   

6.
Peeling skin syndrome is an autosomal recessive genodermatosis characterized by the shedding of the outer epidermis. In the acral form, the dorsa of the hands and feet are predominantly affected. Ultrastructural analysis has revealed tissue separation at the junction between the granular cells and the stratum corneum in the outer epidermis. Genomewide linkage analysis in a consanguineous Dutch kindred mapped the gene to 15q15.2 in the interval between markers D15S1040 and D15S1016. Two homozygous missense mutations, T109M and G113C, were found in TGM5, which encodes transglutaminase 5 (TG5), in all affected persons in two unrelated families. The mutation was present on the same haplotype in both kindreds, indicating a probable ancestral mutation. TG5 is strongly expressed in the epidermal granular cells, where it cross-links a variety of structural proteins in the terminal differentiation of the epidermis to form the cornified cell envelope. An established, in vitro, biochemical cross-linking assay revealed that, although T109M is not pathogenic, G113C completely abolishes TG5 activity. Three-dimensional modeling of TG5 showed that G113C lies close to the catalytic domain, and, furthermore, that this glycine residue is conserved in all known transglutaminases, which is consistent with pathogenicity. Other families with more-widespread peeling skin phenotypes lacked TGM5 mutations. This study identifies the first causative gene in this heterogeneous group of skin disorders and demonstrates that the protein cross-linking function performed by TG5 is vital for maintaining cell-cell adhesion between the outermost layers of the epidermis.  相似文献   

7.
Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities, alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified a homozygous mutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4 expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissues mainly affected by the EDSS phenotype. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle, we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia (CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known “nectinopathy” caused by mutations in a nectin adhesion molecule.  相似文献   

8.
We identified a germline missense mutation at nucleotide 505 (T to C) of the VHL tumor suppressor gene in 14, apparently unrelated, VHL type 2A families from the Black Forest region of Germany. This mutation was previously identified in two VHL 2A families living in Pennsylvania (USA). All affected individuals in the 16 families shared the same VHL haplotype indicating a founder effect. This missense mutation at codon 169 (Tyr to His) would probably cause an alteration in the structure of the putative VHL protein. The association of this distinct mutation with the pheochromocytoma phenotype in VHL may help to elucidate the genetic mechanism of carcinogenesis in this multi tumor cancer syndrome.  相似文献   

9.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome.  相似文献   

10.
Campomelic dysplasia (CD) is a skeletal malformation syndrome frequently accompanied by 46,XY sex reversal. A mutation-screening strategy using SSCP was employed to identify mutations in SOX9, the chromosome 17q24 gene responsible for CD and autosomal sex reversal in man. We have screened seven CD patients with no cytologically detectable chromosomal aberrations and two CD patients with chromosome 17 rearrangements for mutations in the entire open reading frame of SOX9. Five different mutations have been identified in six CD patients: two missense mutations in the SOX9 putative DNA binding domain (high mobility group, or HMG, box); three frameshift mutations and a splice-acceptor mutation. An identical frameshift mutation is found in two unrelated 46,XY patients, one exhibiting a male phenotype and the other displaying a female phenotype (XY sex reversal). All mutations found affect a single allele, which is consistent with a dominant mode of inheritance. No mutations were found in the SOX9 open reading frame of two patients with chromosome 17q rearrangements, suggesting that the translocations affect SOX9 expression. These findings are consistent with the hypothesis that CD results from haploinsufficiency of SOX9.  相似文献   

11.
CD163 and sialoadhesin (SN) were reported as two essential receptors for the porcine reproductive and respiratory syndrome virus. To investigate the relationship between these two genes and porcine immunity, we assigned porcine CD163 and SN respectively to SSC5q21-q24 and SSC17q23 by IMpRH. Expression profiles revealed that CD163 and SN were ubiquitously expressed in ten tissues, and were expressed highly in lymph gland, spleen and liver, which implied the potential functions of CD163 and SN in immunity. Moreover, a single nucleotide polymorphism (SNP) c.3534C>T was found in 3′-UTR of the CD163 gene and association analysis showed that this gene was significantly associated with the IgG content in blood (P < 0.05). A novel missense mutation c.878A>G located in exon4 of the SN gene which caused the amino acid transition from histidine to arginine was detected, and it was significantly associated with the WBC count in the peripheral blood (P < 0.05). These results provided fundamental evidence for CD163 and SN as two functional candidate genes affecting immunity in pigs.  相似文献   

12.
p63 mutations have been associated with EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft lip/palate), as well as with nonsyndromic split hand-split foot malformation (SHFM). We performed p63 mutation analysis in a sample of 43 individuals and families affected with EEC syndrome, in 35 individuals affected with SHFM, and in three families with the EEC-like condition limb-mammary syndrome (LMS), which is characterized by ectrodactyly, cleft palate, and mammary-gland abnormalities. The results differed for these three conditions. p63 gene mutations were detected in almost all (40/43) individuals affected with EEC syndrome. Apart from a frameshift mutation in exon 13, all other EEC mutations were missense, predominantly involving codons 204, 227, 279, 280, and 304. In contrast, p63 mutations were detected in only a small proportion (4/35) of patients with isolated SHFM. p63 mutations in SHFM included three novel mutations: a missense mutation (K193E), a nonsense mutation (Q634X), and a mutation in the 3' splice site for exon 5. The fourth SHFM mutation (R280H) in this series was also found in a patient with classical EEC syndrome, suggesting partial overlap between the EEC and SHFM mutational spectra. The original family with LMS (van Bokhoven et al. 1999) had no detectable p63 mutation, although it clearly localizes to the p63 locus in 3q27. In two other small kindreds affected with LMS, frameshift mutations were detected in exons 13 and 14, respectively. The combined data show that p63 is the major gene for EEC syndrome, and that it makes a modest contribution to SHFM. There appears to be a genotype-phenotype correlation, in that there is a specific pattern of missense mutations in EEC syndrome that are not generally found in SHFM or LMS.  相似文献   

13.
Pfeiffer syndrome (OMIM 101600) is an autosomal dominant disorder characterized by craniosynostosis, midface hypoplasia, ocular proptosis and digital malformations. We report on a type II Pfeiffer female infant with craniosynostosis, hydrocephalus, and characteristic craniofacial and digital abnormalities. The patient had a history of airway difficulty. Bronchoscopy at age four months revealed low tracheal stenosis and fibrous cartilaginous rings. She underwent tracheostomy for the treatment of cyanotic episodes. Molecular analysis revealed a de novo missense mutation c.870 G>T (TGG>TGT) in the FGFR2 gene that predicts a substitution of cysteine for tryptophan at the codon 290, (W290C). There is phenotypic heterogeneity of tracheal anomalies due to FGFR2 mutations. A review of the literature shows that Pfeiffer patients with the similar tracheal abnormalities can be caused by different FGFR2 mutations and, likewise, the patients with the same FGFR2 mutation may manifest different kinds of tracheal anomalies. Tracheal anomalies may occur in Pfeiffer patients and cause morbidity and mortality because of airway obstruction. Recognition and detailed evaluation of tracheal anomalies should be included in the early diagnostic workup for severe Pfeiffer patients.  相似文献   

14.
Familial cold autoinflammatory syndrome (FCAS) is an autosomal dominant inflammatory disease with a high degree of penetrance that is characterized by episodes of rash, arthralgia, fever, conjunctivitis, and leukocytosis after generalized exposure to cold. FCAS was previously mapped to a 10-cM region on chromosome 1q44, and subsequently the gene ( CIAS1) responsible for FCAS was identified. In this paper, we describe the physical and genetic mapping of the FCAS locus, and we report a large ancestral haplotype and a new disease-causing mutation. A BAC contig of approximately 3 Mb was developed and subsequently used for high throughput sequencing. We identified a critical region of 4 cM using rare crossover events in four large North American FCAS families. An unusually large shared haplotype (40 cM) was identified in three of the four families. We found a single heterozygous missense mutation (T1058C=L353P) in exon 3 of CIAS1 in all four families that is responsible for the large majority of FCAS cases described in the literature. We also report a comprehensive list of intragenic single nucleotide polymorphisms. The data provided here will assist others researching the 1q44 region and will aid clinicians in the diagnosis of FCAS.  相似文献   

15.
Mowat-Wilson syndrome is a mental retardation-multiple congenital anomaly syndrome characterized by a typical facies, developmental delay, epilepsy, and variable congenital malformations, including Hirschsprung disease, urogenital anomalies, congenital heart disease, and agenesis of the corpus callosum. This disorder is sporadic and is caused by heterozygous mutations or deletions of the ZFHX1B gene located in the 2q22 region. We report here the first Moroccan patient, born to consanguineous parents, with Mowat-Wilson syndrome, due to a de novo, unreported mutation of the ZFHX1B gene.  相似文献   

16.
In order to further understand the role of fibrillin-1 (FBN1, OMIM 134797) perturbations in the pathogenesis of Marfan syndrome (MFS, OMIM 154700) we studied a Han Chinese family in which MFS was segregating. In the Chinese family with 5 affected members, mutation screening for FBN1 was performed using direct sequencing. A novel non-synonymous mutation in the transforming growth factor beta binding protein-like (TB) domain of the FBN1 gene was found. The missense mutation c.3022T>C (C1008R) located in exon 24. This mutation was present in the proband and in two other affected family members, but in neither unaffected family members nor unrelated control subjects. The novel non-synonymous mutation, c.3022T>C (C1008R) in the TB domain of FBN1 gene, may be involved in the pathogenesis of MFS in a Han Chinese family.  相似文献   

17.
18.
BACKGROUND: Mutations in the chloride channel gene, CLCNKB, usually cause classic Bartter syndrome (cBS) or a mixed Bartter-Gitelman phenotype in the first years of life. METHODS: We report an adult woman with atypical BS caused by a homozygous missense mutation, A204T, in the CLCNKB gene, which has previously been described as the apparently unique cause of cBS in Spain. RESULTS: The evaluation of this patient revealed an overlap of phenotypic features ranging from severe biochemical and systemic disturbances typical of cBS to scarce symptoms and diagnosis in the adult age typical of Gitelman syndrome. The tubular disease caused a dramatic effect on mental, growth and puberal development leading to low IQ, final short stature and abnormal ovarian function. Furthermore, low serum PTH concentrations with concomitant nephrocalcinosis and normocalcaemia were observed. Both ovarian function and serum PTH levels were normalized after treatment with cyclooxygenase inhibitors. CONCLUSIONS: The present report confirms a weak genotype-phenotype correlation in patients with CLCNKB mutations and supports the founder effect of the A204T mutation in Spain. In our country, the genetic diagnosis of adult patients with hereditary hypokalaemic tubulopathies should include a screening of A204T mutation in the CLCNKB gene.  相似文献   

19.
A novel X-linked mental retardation (XLMR) syndrome was recently identified, resulting from creatine deficiency in the brain caused by mutations in the creatine transporter gene, SLC6A8. We have studied the prevalence of SLC6A8 mutations in a panel of 290 patients with nonsyndromic XLMR archived by the European XLMR Consortium. The full-length open reading frame and splice sites of the SLC6A8 gene were investigated by DNA sequence analysis. Six pathogenic mutations, of which five were novel, were identified in a total of 288 patients with XLMR, showing a prevalence of at least 2.1% (6/288). The novel pathogenic mutations are a nonsense mutation (p.Y317X) and four missense mutations. Three missense mutations (p.G87R, p.P390L, and p.P554L) were concluded to be pathogenic on the basis of conservation, segregation, chemical properties of the residues involved, as well as the absence of these and any other missense mutation in 276 controls. For the p.C337W mutation, additional material was available to biochemically prove (i.e., by increased urinary creatine : creatinine ratio) pathogenicity. In addition, we found nine novel polymorphisms (IVS1+26G-->A, IVS7+37G-->A, IVS7+87A-->G, IVS7-35G-->A, IVS12-3C-->T, IVS2+88G-->C, IVS9-36G-->A, IVS12-82G-->C, and p.Y498) that were present in the XLMR panel and/or in the control panel. Two missense variants (p.V629I and p.M560V) that were not highly conserved and were not associated with increased creatine : creatinine ratio, one translational silent variant (p.L472), and 10 intervening sequence variants or untranslated region variants (IVS6+9C-->T, IVS7-151_152delGA, IVS7-99C-->A, IVS8-35G-->A, IVS8+28C-->T, IVS10-18C-->T, IVS11+21G-->A, IVS12+15C-->T, *207G-->C, IVS12+32C-->A) were found only in the XLMR panel but should be considered as unclassified variants or as a polymorphism (p.M560V). Our data indicate that the frequency of SLC6A8 mutations in the XLMR population is close to that of CGG expansions in FMR1, the gene responsible for fragile-X syndrome.  相似文献   

20.
Oculodentodigital dysplasia (ODDD) (OMIM #164200) is a rare congenital, autosomal dominant disorder comprising craniofacial, ocular, dental, and digital anomalies. The syndrome is caused byGJA1 mutations. The clinical phenotype of ODDD involves a characteristic dysmorphic facies, ocular findings (microphthalmia, microcornea, glaucoma), syndactyly type III of the hands, phalangeal abnormalities, diffuse skeletal dysplasia, enamel dysplasia, and hypotrichosis. In a Polish child with the clinical symptoms typical of ODDD, we demonstrated a novel missense mutation c.C31T resulting in p.L11F substitution. Our report provides evidence on the importance of this highly conserved amino acid residue for the proper functioning of GJA1 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号