首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Otitis media with effusion (OME) is one of the most common diseases in children. Alloiococcus otitidis, a new gram-positive bacterial species, was isolated from the middle ear fluid of children with OME; however, the pathogenic role of this bacteria is yet unknown. In this study, the ability of cultured epithelial cell lines (Hep-2 and Hela) and monocytic cell lines (THP-1 and U 937) to secrete chemokine interleukin-8 (IL-8) in response to the A. otitidis organism and three bacterial organisms mainly detected from middle ear fluid in OME, and bacterial cell components was investigated. When stimulated with four viable bacterial cells, epithelial cells and monocytes secreted IL-8 in a time-dependent manner. The monocytes produced significantly higher levels of IL-8 than the epithelial cells. Compared with that by viable bacterial cells, IL-8 secretion by stimulated epithelial cells and monocytes was reduced when the bacteria were heated and treated with glutaraldehyde. With bacterial stimulations, cell treatment of interferon-gamma caused monocytes to increase the induction of IL-8 production, however, the induction of monocyte differentiation caused monocytes to reduce the induction of IL-8 production. Furthermore, epithelial cells and monocytes stimulated by four viable bacterial organisms physically separated from cultured cells reduced the induction of IL-8 compared with directly stimulated cells, and monocytes stimulated with soluble extracts prepared from A. otitidis organisms produced IL-8 in a dose-dependent manner. These results suggest that part of the IL-8 stimulation of the A. otitidis organism may exist in a diffusable factor released by the bacteria or soluble components of the bacteria itself.  相似文献   

2.
The etiology of otitis media with effusion (OME) is unclear. The bacterial analyses of middle ear effusion (MEE) in OME may reveal important information regarding its etiology. Alloiococcus otitidis, Heamophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis were investigated by using microbiologic culture and a multiplex PCR method in the middle ear fluid of 32 children (54 samples) with chronic OME. PCR yielded positive results in 18 (33.3%) middle ear effusions while culture resulted positive for 3 (5.6%). The PCR method detected A. otitidis in 10 (18.5%) specimens, H. influenzae in 7 (13%), M. catarrhalis in 4 (7.4%) and S. pneumoniae in 2 (3.7%) specimens. The multiplex PCR method enhances the detection rate significantly compared to that of the conventional culture method. A. otitidis is the most common detected pathogen in the MEE of the OME.  相似文献   

3.
Alloiococcus otitidis is a recently discovered pathogen of otitis media. However, only a limited number of studies are available about the pathogenic and immunological role of A. otitidis. The aim of this study was to investigate the activation and the cytokine production of human peripheral blood lymphocytes at the early immune response after stimulation with A. otitidis. After stimulation of whole human peripheral blood lymphocytes for 18 h with whole killed A. otitidis or the three major middle ear pathogens (Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis), the expression of CD69 and the production of cytokines were analyzed. The expression of CD69 on T cells and B cells was dose-dependently enhanced after stimulation with A. otitidis. The release of interleukin (IL)-12 was induced after stimulation with A. otitidis, whereas the release of IL-4 was not induced after stimulation with A. otitidis. In addition, the release of interferon (IFN)-gamma was induced after stimulation with A. otitidis. Although the release of IFN-gamma started within 18 h after stimulation with A. otitidis, intracellular production of IFN-gamma was not observed in either CD4+ T cells or CD8+ T cells within 18 h upon stimulation. The patterns of CD69 expression and T helper-type 1 (Th1)-promoting cytokines production were similarly shown when human peripheral blood lymphocytes were stimulated with the other three major pathogens. Our results suggest that A. otitidis has sufficient immunogenic potential to modulate a host immune response, like the other three major middle ear pathogens, and also suggest that the immunogenicity of A. otitidis is very similar, at the early immune response, to that of the three major middle ear pathogens.  相似文献   

4.
During the last decade Alloiococcus otitidis has been identified in specimens from patients with chronic otitis media with effusion. Whereas most of those studies employed molecular techniques, we used minor modifications of conventional microbiological methods to isolate and identify A. otitidis in samples obtained from 20/50 (40%) children referred for myringotomy. Alloiococcus otitidis was isolated from 10/22 (45%) Indigenous and 10/28 (36%) non-Indigenous children. This is the first report of isolation of A. otitidis from Australian children with chronic otitis media. All isolates were sensitive to penicillin, but 14/20 (70%) of the isolates were resistant or partially resistant to erythromycin as assessed by the E-test.  相似文献   

5.
We measured sIL-2R, TNF-alpha and sICAM-1 in the sera and middle ear effusions (MEEs) of patients with otitis media with effusion (OME). Although there was no signmcant difference between the sIL-2R levels of the serous and mucoid MEEs, they were significantly higher than serum sIL-2R levels of OME patients and healthy controls. TNF-alpha levels of the mucoid MEEs were significantly higher than those of the serous type. However, TNF-alpha was rarely detected in the sera of OME patients or healthy controls. We observed significant differences between the serous and mucoid MEEs with respect to their sICAM-1 levels, which were also higher than serum slCAM-1 levels of OME patients and healthy controls. Our findings suggested that IL-2, TNF-alpha and ICAM-1 could be significantly involved in the pathogenesis of OME through the cytokine network.  相似文献   

6.
Alloiococcus otitidis has been recovered from the middle ear of children with otitis media with effusion, but its natural habitat is not known. To determine whether the nasopharynx and the outer ear canals are the natural habitats of A. otitidis, 145 swabs (50, nasopharynx; 95 outer ear canal) collected from 50 children were screened by polymerase chain reaction. A. otitidis DNA was detected in seven (4.8%) of the 145 specimens, of which four were nasopharynx, and three outer ear canal. These results indicate that the nasopharynx and outer ear canal may be the body sites for localization of A. otitidis.  相似文献   

7.
Inflammation in the middle ear mucosa, which can be provoked by different primary factors such as bacterial and viral infection, local allergic reactions and reflux, is the crucial event in the pathogenesis of otitis media with effusion (OME). Unresolved acute inflammatory responses or defective immunoregulation of middle inflammation can promote chronic inflammatory processes and stimulate the chronic condition of OME. Cytokines are the central molecular regulators of middle ear inflammation and can switch the acute phase of inflammation in the chronic stage and induce molecular-pathological processes leading to the histopathological changes accompanying OME. In this review we present cytokines identified in otitis media, immunoregulatory [interleukin (IL)-2, IL-10, transforming growth factor-beta]) and allergy associated (IL-4, IL-5, granulocyte-macrophage colony-stimulating factor), as crucial molecular regulators, responsible for chronic inflammation in the middle ear and the chronic condition of OME.  相似文献   

8.
Alloiococcus otitidis is a recently discovered bacterium frequently associated with otitis media. However, no study is available as to whether A. otitidis has a pathogenic role and induces local immune response in the middle ear as a true pathogen. Whole bacterial sonicate of A. otitidis was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and transferred to a nitrocellulose membrane. Then, Western blot analysis was performed with supernatant of the middle ear effusions from children with A. otitidis-positive otitis media. SDS-PAGE of the bacterial sonicate showed several protein bands, designated A1-A11. Western blot analysis revealed the presence of IgG, secretory IgA, IgG2, and IgM against A. otitidis in the middle ear effusions. Absorption of the specimens with sonicates of other major middle ear pathogens did not alter the reactivity of antibodies against the alloiococcal antigens. The results suggest that specific local immune response against A. otitidis is induced during middle ear infection of the organism as a true pathogen. A5, A6 or A11 is expected to be a main antigenic determinant. This is the first report to show evidence of local antibody response against A. otitidis and to disclose antigenic components of A. otitidis.  相似文献   

9.
Disruption of periciliary fluid homeostasis is the main pathogenesis of otitis media with effusion (OME), one of the most common childhood diseases. Although the underlying molecular mechanisms are unclear, it has been suggested that the altered functions of ion channels and transporters are involved in the fluid collection of middle ear cavity of OME patients. In the present study, we analyzed the effects of a major cytokine interleukin (IL)-1beta, which was known to be involved in the pathogenesis of OME, on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) in human middle ear cells. Intracellular pH (pH(i)) was measured in primary cultures of normal human middle ear epithelial (NHMEE) cells using a double perfusion chamber, which enabled us to analyze the membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to bumetanide-sensitive intracellular uptake of NH(4) (+). In NHMEE cells, NKCC activities were observed only in the basolateral membrane, and immunoblotting using specific antibodies revealed the expression of NKCC1. Interestingly, IL-1beta treatments augmented the basolateral NKCC activities and increased NKCC1 expression. In addition, IL-1beta treatments stimulated bumetanide-sensitive fluid transport across the NHMEE cell monolayers. Furthermore, an elevated NKCC1 expression was observed in middle ear cells from OME patients when compared to those from control individuals. The above results provide in vitro and in vivo evidence that the inflammatory cytokine IL-1beta upregulates NKCC1 in middle ear epithelial cells, which would be one of the important underlying mechanisms of excess fluid collection in OME patients.  相似文献   

10.
Inflammation in the middle ear mucosa, caused usually by bacterial and viral pathogens, is the primary event in the middle ear predisposing the development of otitis media with effusion (OME). Numerous inflammatory mediators have been identified in OME. However, cytokines play a central role as initiators, mediators and regulators of middle ear inflammation and subsequent molecular-pathological processes in middle ear tissues, leading to histopathological changes in the middle ear cavity and the pathogenesis of OME. In this article, we aim to present an overview of current research developments in the pro-inflammatory cytokine involvement in the aetiology of otitis media with effusion.  相似文献   

11.
In this study, the stimulatory effects of different lactic acid bacteria strains, and their subcellular fractions, on the THP-1 cell line were evaluated. Lactobacillus plantarum was found in particular to induce high levels of IL-23p19 mRNA, but it moderately induced TNF-alpha production. IL-10 production was not entirely affected by L. plantarum stimulation. When subcellular fractions of L. plantarum were used to treat THP-1 cells, IL-23p19 mRNA expression was enhanced in a dose-responsive manner, specifically by lipoteichoic acid (LTA). The cotreatment of THP-1 cells by both L. plantarum and Staphylococcus aureus LTA resulted in decreased IL-10 production when compared with cells treated by S. aureus LTA alone. Taken together, these data suggest that LTA isolated from L. plantarum elicits stimulatory effects upon the expression of IL-23p19 and inhibitory effects on pathogen-mediated IL-10 production.  相似文献   

12.
Differentiation and maturation of monocytes are accompanied by the expression of specific surface glycoproteins, the secretion of cytokines, and the capacity to respond to ligands. These changes may be influenced by interactions with hormones, soluble lymphocytic products, or direct contact with lymphocytes. We have studied two distinct pathways in the differentiation of a human monocytic cell line, THP-1: one being induced by IFN-gamma and the other by 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3). In THP-1 cells, IFN-gamma induces cell surface expression of HLA-DR and CD54 and production of IL-1 beta, TNF-alpha, and IL-6. In contrast, 1,25(OH)2D3 increases cell surface expression of CD11b and CD14, but fails to stimulate cytokine production. Direct contact of THP-1 with stimulated fixed T cells markedly induces IL-1 beta, TNF-alpha, and IL-6 production by THP-1. Production is higher when THP-1 have been previously exposed to 1,25(OH)2D3 as compared to prior exposure to IFN-gamma. mAb raised against certain relevant cell surface glycoproteins on THP-1 were tested for their ability to block the response of THP-1 to T cells. Antibodies to CD11a, CD11b, and CD11c, alone or in combination, only partially blocked IL-1 beta production by THP-1, whereas antibodies to CD54 and CD14 did not. Thus other unknown structures on the THP-1 cells may be involved in the induction of THP-1 cytokine production by T cell contact.  相似文献   

13.
Xie H  Gu XX 《Cellular microbiology》2008,10(7):1453-1467
To elucidate the role of Moraxella catarrhalis lipooligosaccharide (LOS) in otitis media with effusion (OME), the effects of LOS on adhesion antigens of human monocytes were investigated. M. catarrhalis LOS selectively enhanced intercellular adhesion molecule 1 (ICAM-1 or CD54) expression on human monocytes by significantly increasing both the surface expression intensity and the percentage of ICAM-1+ cells. ICAM-1 upregulation on human monocytes by the LOS required surface CD14, TLR4, NF-κB p65 and c-Jun N-terminal kinase (JNK) activity. Our study also revealed that the LOS-induced surface ICAM-1 expression was partially mediated through a TNF-α dependent autocrine mechanism and could be further augmented by lipopolysaccharide-binding protein in serum. In addition, M. catarrhalis LOS also stimulated human monocytes to produce pro-inflammatory cytokines in both TLR4- and CD14-dependent pathways. Our results also indicated that enhanced surface ICAM-1 expression on monocytes may hinder their adherence to the lung epithelial monolayer. Furthermore, the LOS-activated human monocytes secreted a significantly high level of IL-8, and could stimulate adjacent naïve monocytes to produce TNF-α which was partially mediated via membrane ICAM-1 and IL-8/IL-8RA. These results suggest that M. catarrhalis LOS could induce excessive middle ear inflammation through a cellular cross-talk mechanism during OME.  相似文献   

14.
IL-12 is a 75 kDa heterodimeric cytokine composed of two disulfide-linked subunits, p35 and p40, which plays an important role in the regulation of the immune response. We tested the hypothesis that thiol antioxidants might interfere with dimerization of the two IL-12 subunits. We thus studied the effect of reduced glutathione (GSH) and N-acetyl-cysteine (NAC) on IL-12 p75 production by human THP-1 cell stimulated with IFN-gamma and Staphylococcus aureus Cowan strain I (SAC), using ELISAs specific for IL-12 p75 or the p40 subunit. NAC and GSH, but not cystine, at concentrations of 5-10 mM inhibited production of IL-12 p75 but not of the p40 subunit. NAC did not inhibit p40 or p35 mRNA expression in dendritic cells or THP-1 cells, or NF-kappa B activation in THP-1 cells. The effect of NAC was specific for IL-12 p75, as NAC did not affect induction of MHC class II expression by IFN-gamma-stimulated THP-1 cells. IL-12 dimer formation appears to be reduced by NAC also in vivo, because pretreatment with NAC (1 g/kg, orally), before LPS injection in mice, inhibited peak IL-12 p75 serum levels without affecting those of p40. We conclude that thiol levels regulate IL-12 p75 production and that assembly of the heterodimer is a step that might represent a target for pharmacological intervention.  相似文献   

15.
Monocytes/macrophages are directly involved in tissue remodeling and tissue destruction through the release of matrix metalloproteinases (MMP). In the present study, we examined the effect mediated by contact of polarized Th cells with mononuclear phagocytes on the production of MMP-1, MMP-9, and their inhibitor. Plasma cell membranes from Ag-activated Th1 and Th2 cells were potent inducers of MMP-1 production by THP-1 cells. Cell membrane-associated TNF was found to be only partially involved in MMP-1 induction by both Th1 and Th2 cells. In Th2 cells exclusively, membrane-associated IL-4 induced MMP-1 production by THP-1 cells. This membrane-associated IL-4 effect was additive to that of TNF and was specifically observed on MMP-1 as MMP-9 production was concomitantly inhibited. Similarly, soluble IL-4 induced THP-1 cells to produce MMP-1, its effect proving additive to that of soluble TNF and to that of cell membranes of mitogen-activated HUT-78 cells. Its activity was blocked by IL-4 neutralization, and was unaffected by the presence of indomethacin. These effects on THP-1 cells were observed at protein and mRNA levels. Although inhibitory on freshly isolated peripheral blood monocytes, soluble IL-4 enhanced T cell-induced MMP-1 and inhibited MMP-9 production both at protein and mRNA levels in monocytes cultured for 7 days in the presence of GM-CSF. Thus, in contrast with previously reported effects, Th2 and IL-4 specifically induce MMP-1 production by mononuclear phagocytes at various stages of differentiation. This IL-4 activity may be relevant to pathological conditions dominated by Th2 inflammatory responses, resulting in tissue remodeling and destruction.  相似文献   

16.
Smirnova MG  Birchall JP  Pearson JP 《Cytokine》2000,12(11):1732-1736
TNF-alpha has been implicated in the aetiology of otitis media with effusion (OME), where goblet cells proliferate in a modified respiratory epithelium, leading to the accumulation of a mucin-rich effusion in the middle-ear cleft. The MUC5AC mucin gene product has been identified as a component of these effusions. Here we have used the HT29-MTX goblet cell line, which secretes MUC5AC mucin, as a model to study the effect of TNF-alpha on goblet cells. MUC5AC mucin was identified and quantitated with a monoclonal antibody NCL-HGM-45M1. TNF-alpha stimulates MUC5AC mucin secretion in a dose-dependent manner, with 20 ng/ml producing maximal stimulation. Both pre-confluent and confluent cells showed peak stimulation after 7 h, however the pre-confluent cells showed twice the level of mucin hypersecretion. These results suggest that TNF-alpha stimulation of mucin secretion could play an important role in the early acute phase of the development of OME. This hypersecretion of mucin could then lead to the failure of the mucociliary clearance system, resulting in the accumulation of a mucin-rich effusion in the middle ear and the movement to a more chronic phase of the disease.  相似文献   

17.
The pro-inflammatory cytokines IL-6 and TNF-alpha have been implicated in the pathogenesis of otitis media with effusion (OME). A disease where goblet cells proliferate in a modified respiratory epithelium, leading to the accumulation of a mucin-rich effusion in the middle ear cleft. The MUC5AC and MUC5B mucin gene products have been identified as components of these effusions. To determine the effect of IL-6 and TNF-alpha on MUC5AC and MUC5B secretion we have used HT29-MTX goblet cells, which secrete both types of mucins. MUC5AC and MUC5B mucin secretion was measured by an enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody NCL-HGM-45M1 and polyclonal antiserum TEPA, respectively. Time response (0-72 hours) and dose response (1.5-150 ng/ml) studies were carried out. IL-6 and TNF-alpha stimulated MUC5AC and MUC5B mucin secretion in a time dependent manner, both in pre-confluent and post-confluent cells. IL-6 (15 ng/ml and 20 ng/ml) produced a low and prolonged stimulation of mucin secretion that persisted for 72 hours, with peak response at 24 hours after induction. The IL-6-mediated mucin secretion at 24 hours was concentration-dependent, with a maximal effect at 15 ng/ml. TNF-alpha (20 ng/ml) induced rapid stimulation of mucin secretion within the first 24 hours, with peak response at 7 hours after induction. IL-6 and TNF-alpha exposure significantly increased MUC5AC secretion, but not MUC5B secretion. Maximal levels of cytokine-induced mucin secretion were detected in pre-confluent cells that showed one and a half- and two-fold increases in MUC5AC secretion after IL-6 and TNF-alpha stimulation, respectively, in comparison with post-confluent cells. The results presented here suggest that IL-6 and TNF-alpha generate a differential up-regulation of mucin secretion and thus contribute to the expression of mucin genes in inflammatory responses.  相似文献   

18.
Alloiococcus otitidis is a recently discovered Gram-positive bacterium that has been linked with otitis media (middle ear infections). In this study, we describe the structure of a novel capsular polysaccharide (PS) expressed by the type-strain of A. otitidis, ATCC 51267, and the synthesis of a glycoconjugate composed of the capsule PS and bovine serum albumin (BSA). The capsule PS of A. otitidis type-strain was determined to be a repeating trisaccharide composed of 3-substituted N-acetyl-D-glucosamine (GlcpNAc), 6-substituted N-acetyl-D-galactosamine (GalpNAc), and 4-substituted D-glucuronic acid (GlcpA), of which the majority was amidically decorated with L-glutamic acid (Glu): {-->6)-beta-GalpNAc-(1-->4)-[Glup-->6]-beta-GlcpA-(1-->3)-beta-GlcpNAc-(1}n. Monomeric analysis performed on other A. otitidis strains revealed that similar components were variably expressed, but Glu appeared to be a regular constituent in all the strains examined. Due to the suitable presence of GlcpA and Glu, our approach for glycoconjugate synthesis employed a carbodiimide-based strategy with activation of available carboxyl groups by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), which afforded direct coupling between the capsule PS and BSA. Analysis by mass spectrometry indicated that this A. otitidis capsule PS-BSA conjugate was composed of BSA units that carried up to seven capsule PSs. This work represents the first report in the literature describing an A. otitidis cell-surface carbohydrate and the synthesis of a glycoconjugate preparation thereof. Presently, we are formulating plans to immunologically evaluate this A. otitidis glycoconjugate vaccine in animals.  相似文献   

19.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

20.
Immune responses to parasitic helminth are usually characterized by quite mysterious phenomena: dominance of Th2-like immunity and antigen-nonspecific IgE secretion. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in rats and named it DiAg. In the presence of IL-4, DiAg induces mouse B cells to secrete IgE, which is antigen-nonspecific polyclonal antibody. We investigated the biochemical characteristics of DiAg as a factor of inducing IgE in this study. Recombinant DiAg (rDiAg) with interleukin (IL)-4 induced IgE synthesis in highly purified human normal B cells in vitro cell culture systems. The addition of recombinant human soluble CD40 IgG fusion protein (rsCD40-Ig) inhibited induction of IgE synthesis by rDiAg with IL-4. Monocyte cells were stimulated with rDiAg and recombinant human soluble CD40L (rsCD40L); IL-12 and TNF-alpha were induced. The addition of rsCD40-Ig to THP-1 cells activated with rDiAg and rsCD40L inhibited the production of IL-12. rDiAg bound to the monocyte cell membrane fraction and recombinant human soluble CD40; this binding of rDiAg was competitively inhibited by addition of rsCD40L. Moreover, in CD40-deficient mice, IgE production and MLN-B cell proliferation by rDiAg were completely absent. Based on these results, we concluded that DiAg is an agonist of CD40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号