首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

2.
Two isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyse the interconversion of active cortisol to inactive cortisone; 11β-HSD1 is a low affinity, NADP(H)-dependent dehydrogenase/oxo-reductase, and 11β-HSD2 a high affinity, NAD-dependent dehydrogenase. Because of the importance of 11β-HSD in regulating corticosteroid hormone action, we have analysed the distribution of the 11β-HSD isoforms in human adult and foetal tissues (including placenta), and, in addition have performed a series of substrate specificity studies on the novel, kidney 11β-HSD2 isoform. Using an RT-PCR approach, we failed to detect 11β-HSD1 mRNA in any human mid-gestational foetal tissues. In contrast 11β-HSD2 mRNA was present in foetal lung, adrenal, colon and kidney. In adult tissues 11β-HSD2 gene expression was confined to the mineralocorticoid target tissues, kidney and colon, whilst 11β-HSD1 was expressed predominantly in glucocorticoid target tissues, liver, lung, pituitary and cerebellum. In human kidney homogenates, 11-hydroxylated progesterone derivatives, glycyrrhetinic acid, corticosterone and the “end products” cortisone and 11-dehydrocorticosterone were potent inhibitors of the NAD-dependent conversion of cortisol to cortisone. Finally high levels of 11β-HSD2 mRNA and activity were observed in term placentae, which correlated positively with foetal weight. The tissue-specific distribution of the 11β-HSD isoforms is in keeping with their differential roles, 11β-HSD1 regulating glucocorticoid hormone action and 11β-HSD2 mineralocorticoid hormone action. The correlation of 11β-HSD2 activity in the placenta with foetal weight suggests, in addition, a crucial role for this enzyme in foetal development, possibly in mediating ontogeny of the foetal hypothalamo-pituitary-adrenal axis.  相似文献   

3.
The interconversion of estrone (E1) and 17β-estradiol (E2), androstenedione (4-ene-dione) and testosterone (T), as well as dehydroepiandrosterone and androst-5-ene-3β,17β-diol is catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD). The enzyme 17β-HSD thus plays an essential role in the formation of all active androgens and estrogens in gonadal as well as extragonadal tissues. The present study investigates the tissue distribution of 17β-HSD activity in the male and female rat as well as in some human tissues and the distribution of 17β-HSD mRNA in some human tissues. Enzymatic activity was measured using 14C-labeled E1, E2, 4-ene-dione and T as substrates. Such enzymatic activity was demonstrated in all 17 rat tissues examined for both androgenic and estrogenic substrates. While the liver had the highestlevel of 17β-HSD activity, low but significant levels of E2 as well as T formation were found in rat brain, heart, pancreas and thymus. The oxidative pathway (E2→E1, T→4-ene-dione) was favored over the reverse reaction in almost all rat tissues while in the human, almost equal rates were found in most of the 15 tissues examined. The widespread distribution of 17β-HSD in rat and human tissues clearly indicates the importance of this enzyme in peripheral sex steroid formation or intracrinology.  相似文献   

4.
An overview of the application of kinetic methods to the delineation of 17β-hydroxysteroid dehydrogenase (17β-HSD) heterogeneity in mammalian tissues is presented. Early studies of 17β-HSD activity in animal liver and kidney subcellular fractions were suggestive of multiple forms of the enzyme. Subsequently, detailed characterization of activity in cytosol and subcellular membrane fractions of human placenta, with particular emphasis on inhibition kinetics, yielded evidence of two kinetically-differing forms of 17β-HSD in that organ. Gene cloning and transfection experiments have confirmed the identity of these two proteins as products of separate genes. 17β-HSD type 1 is a cytosolic enzyme highly specific for C18 steroids such as 17β-estradiol (E2) and estrone (E1). 17β-HSD type 2 is a membrane bound enzyme reactive with testosterone (T) and androstenedione (A), as well as E2 and E1. Useful parameters for the detection of multiple forms of 17β-HSD appear to be the E2/T activity ratio, NAD/NADP activity ratios, steroid inhibitor specificity and inhibition patterns over a wide range of putative inhibitor concentrations. Evaluation of these parameters for microsomes from samples of human breast tissue suggests the presence of 17β-HSD type 2. The 17β-HSD enzymology of human testis microsomes appears to differ from placenta. Analysis of human ovary indicates granulosa cells are particularly enriched in the type 1 enzyme with type 2-like activity in stroma/theca. Mouse ovary appears to contain forms of 17β-HSD which differ from 17β-HSD type 1 and type 2 in their kinetic properties.  相似文献   

5.
In this paper we report that two human long-term endometrial cancer cell lines, Ishikawa and HEC-1A, exhibit quite different abilities in metabolizing estrogens. As a matter of fact, incubation of Ishikawa cells with close-to-physiological concentrations of estradiol (E2) as precursor resulted in: (1) elevated formation (up to 90%) of E2-sulphate (E2-S), using lower precursor concentrations; (2) very limited conversion to estrone (E1) (< 10% at 24 h incubation), as either free or sulphate; and (3) low but consistent production of other estrogen derivatives, such as 2-hydroxy-estrogens and estriol. Conversely, scant amounts (if any) of E2-S were found in HEC-1A cells, while no detectable formation of other estrogen metabolites could be observed after 24 h. On the other hand, E1 production was significantly greater (nearly 60% at 24 h) than in Ishikawa cells, a large proportion of E1 (over 50% of the total) being formed after only 6 h incubation using time-course experiments. The hypothesis that E2 metabolism could be minor in Ishikawa cells as a consequence of the high rate of E2-S formation encountered is contradicted by the evidence that conversion to E1 also remains limited in the presence of much lower E2-S amounts, seen using higher molar concentrations of precursor. Overall, we observe that 17β-hydroxysteroid dehydrogenase (17β-HSD) activity diverges significantly in intact Ishikawa and HEC-1A endometrial cancer cells. This difference could not merely be accounted for by the diverse amounts of substrate (E2) available to the cells, nor may it be imputed to different levels of endogenous estrogens. It should rather be sought in different mechanisms controlling 17β-HSD activity or, alternatively, in the presence of distinct isoenzymes in the two different cell types.  相似文献   

6.
Glucocorticoids promote macrophage phagocytosis of leukocytes undergoing apoptosis. Prereceptor metabolism of glucocorticoids by 11beta-hydroxysteroid dehydrogenases (11beta-HSDs) modulates cellular steroid action. 11beta-HSD type 1 amplifies intracellular levels of active glucocorticoids in mice by reactivating corticosterone from inert 11-dehydrocorticosterone in cells expressing the enzyme. In this study we describe the rapid (within 3 h) induction of 11beta-HSD activity in cells elicited in the peritoneum by a single thioglycolate injection in mice. Levels remained high in peritoneal cells until resolution. In vitro experiments on mouse macrophages demonstrated that treatment with inert 11-dehydrocorticosterone for 24 h increased phagocytosis of apoptotic neutrophils to the same extent as corticosterone. This effect was dependent upon 11beta-HSD1, as 11beta-HSD1 mRNA, but not 11beta-HSD2 mRNA, was expressed in these cells; 11-dehydrocorticosterone was ineffective in promoting phagocytosis by Hsd11b1(-/-) macrophages, and carbenoxolone, an 11beta-HSD inhibitor, prevented the increase in phagocytosis elicited in wild-type macrophages by 11-dehydrocorticosterone. Importantly, as experimental peritonitis progressed, clearance of apoptotic neutrophils was delayed in Hsd11b1(-/-) mice. These data point to an early role for 11beta-HSD1 in promoting the rapid clearance of apoptotic cells during the resolution of inflammation and indicate a novel target for therapy.  相似文献   

7.
Two isoforms of 11β-hydroxysteroid dehydrogenase (11β-HSD1 and 11β-HSD2) play an important role in regulation of glucocorticoid corticosterone (CORT, the active form in rodents) by the interconversion between CORT and 11-dehydrocorticosterone (11DHC, the biologically inert form). 11β-HSD1 is an NADP+/NADPH-dependent oxidoreductase which is mainly expressed in liver and kidney, while 11β-HSD2 is an NAD+-dependent oxidase which is predominantly expressed in kidney. The regulation of 11β-HSD1 and 11β-HSD2 mRNA (Hsd11b1 and Hsd11b2) levels and their activities by IGF-1 was performed in liver, kidney, and testis of IGF-1 knockout male mice. Real-time PCR showed that Hsd11b1 in liver was decreased while Hsd11b2 mRNA level was decreased in kidney of IGF-1 null mice. 11β-HSD1 and 11β-HSD2 activities fluctuated with the changes of their respective Hsd11b1 or Hsd11b2 mRNA levels. In conclusion, IGF-I tissue-specifically regulates Hsd11b1 and Hsd11b2 expression.  相似文献   

8.
Licorice-derivatives such as glycyrrhizic acid (GA) competitively inhibit 11β-hydroxysteroid dehydrogenase(11β-HSD) type 2 (11-HSD2) enzymatic activity, and chronic clinical use often results in pseudoaldosteronism. Since the effect of GA on 11-HSD2 expression remains unknown, we undertook in vivo and in vitro studies. Male Wistar rats were given 30, 60 or 120 mg/kg of GA twice a day for 2 weeks. Plasma corticosterone was decreased in those given the 120 mg dose, while urinary corticosterone excretion was increased in those given the 30 and 60 mg doses but decreased in those given 120 mg GA. NAD+-dependent dehydrogenase activity in kidney microsomal fraction was decreased in animals receiving doses of 60 and 120 mg GA. The 11-HSD2 protein and mRNA levels were decreased in those given 120 mg GA. In contrast, in vitro studies using mouse kidney M1 cells revealed that 24 h treatment with glycyrrhetinic acid did not affect the 11-HSD2 mRNA expression levels. Thus, in addition to its role as a competitive inhibitor of 11-HSD2, the chronic high dose of GA suppresses mRNA and protein expression of 11-HSD2 possibly via indirect mechanisms. These effects may explain the prolonged symptoms after cessation of GA administration in some pseudoaldosteronism patients.  相似文献   

9.
Long-term treatment (21 days) of male rats with corticosterone in the drinking water caused a significant increase in the activity of the NADP-dependent form of 11β-hydroxysteroid dehydrogenase (11-HSD1) in the pituitary, thymus, and spleen, (marginally in the hippocampus, amygdala and lymph nodes), without having any effect in a number of other central and peripheral tissues. In contrast, repeated restraint stress, although increasing plasma corticosterone to the same level as that observed after its administration, failed to change the activity of this key regulatory enzyme, which allows aldosterone to exert its specific effects in the presence of a large excess of corticosterone. This resistance to elevation in 11-HSD activity was also observed in the thymuses of subordinate rats during social stratification in a visible burrow system. In both cases, the circulating levels of corticosterone were much higher in stressed rats than in control animals. Factors which might account for these differences in response are discussed and compared with the situation in intact cells where, unlike in tissue homogenates, the reduction of 11-dehydrocorticosterone to corticosterone (reductase activity) appears to predominate.  相似文献   

10.
Two isoforms of 11β-HSD exist; 11β-HSD1 is bi-directional (the reductase usually being predominant) and 11β-HSD2 functions as a dehydrogenase, conferring kidney mineralocorticoid specificity. We have previously described endogenous substances in human urine, “glycyrrhetinic acid-like factors (GALFs)”, which like licorice, inhibit the bi-directional 11β-HSD1 enzyme as well as the dehydrogenase reaction of 11β-HSD2.

Many of the more potent GALFs are derived from two major families of adrenal steroids, corticosterone and cortisol. For example, 35-tetrahydro-corticosterone, its derivative, 35-tetrahydro-11β-hydroxy-progesterone (produced by 21-deoxygenation of corticosterone in intestinal flora); 35-tetrahydro-11β-hydroxy-testosterone (produced by side chain cleavage of cortisol); are potent inhibitors of 11β-HSD1 and 11β-HSD2-dehydrogenase, with IC50's in range 0.26–3.0 μM, whereas their 11-keto-35-tetrahydro-derivatives inhibit 11β-HSD1 reductase, with IC50's in range 0.7–0.8 μM (their 35β-derivatives being completely inactive).

Inhibitors of 11β-HSD2 increase local cortisol levels, permitting it to act as a mineralocorticoid in kidney. Inhibitors of 11β-HSD1 dehydrogenase/11β-HSD1 reductase serve to adjust the set point of local deactivation/reactivation of cortisol in vascular and other glucocorticoid target tissues, including adipose, vascular, adrenal tissue, and the eye. These adrenally derived 11-oxygenated C21- and C19-steroidal substances may serve as 11β-HSD1- or 11β-HSD2-GALFs. We conclude that adrenally derived products are likely regulators of local cortisol bioactivity in humans.  相似文献   


11.
The appropriate expression of 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3β-HSD) is vital for mammalian reproduction, fetal growth and life maintenance. Several isoforms of 3β-HSD, the products of separate genes, have been identified in various species including man. Current investigations are targeted toward defining the processes that regulate the levels of specific isoforms in various steroidogenic tissues of man. High levels of expression of 3β-HSD were observed in placental tissues. It has been generally considered that the multinucleated syncytiotrophoblastic cells are the principal sites of 3β-HSD expression and, moreover, that 3β-HSD expression is intimately associated with cyclic AMP-promoted formation of syncytia. Herein we report the presence of 3β-HSD immunoreactive and mRNA species in uninucleate cytotrophoblasts in the chorion laeve, similar to that in syncytia but not cytotrophoblast placenta. In vitro, 3β-HSD levels in chorion laeve cytotrophoblasts were not increased with time nor after treatment with adenylate cyclase activators, whereas villous cytotrophoblasts spontaneously demonstrated progressive, increased 3β-HSD expression. Moreover, 3β-HSD synthesis appeared to precede morphologic syncytial formation. Thus high steroidogenic enzyme expression in placenta is not necessarily closely linked to formation of syncytia. Both Western immunoblot and enzymic activity analyses also indicated that the 3β-HSD expressed in these cytotrophoblastic populations was the 3β-HSD type I gene product (Mr, 45K) and not 3β-HSD type II (Mr, 44K) expressed in fetal testis. In cultures of fetal zone and definitive zone cell of human fetal adrenal, 3β-HSD expression was not detected until ACTH was added. ACTH, likely acting in a cyclic AMP-dependent process, induced 3β-HSD type II activity and mRNA expression. The higher level of 3β-HSD mRNA in definitive zone compared with fetal zone cells was associated with parallel increases in cortisol secretion relative to dehydroepiandrosterone sulfate formation.  相似文献   

12.
Accumulating evidence suggests that the actions of glucocorticoids in target tissues are critically determined by the expression of not only the glucocorticoid receptor (GR) but also the glucocorticoid-metabolizing enzymes, known as 11β-hydroxysteroid dehydrogenase types 1 and 2 (11β-HSD1 and 11β-HSD2). To gain insight into the role of glucocorticoids in fetal development, the expression patterns of the two distinct 11β-HSD isozymes and GR were studied in the mouse embryo from embryonic day 12.5 (E12.5, TERM = E19) to postnatal day 0.5 (P0.5) by in situ hybridization and immunohistochemistry, respectively. 11β-HSD1 mRNA was detected in the heart as early as E12.5 and maintained thereafter. In the lung and liver, 11β-HSD1 mRNA was first detected between E14.5 and E16.5, increased to high levels towards term and maintained after birth. Relatively low levels of 11β-HSD1 mRNA were also detected in the kidney, adrenal glands and gastrointestinal tract at E18.5. However, the mRNA for 11β-HSD1 was undetectable in all other embryonic tissues including the brain. In contrast, kidney was the only organ that expressed appreciable levels of 11β-HSD2 mRNA during embryonic life. The level of 11β-HSD2 mRNA in the kidney increased dramatically in the newborn, which coincided with expression of 11β-HSD2 mRNA in the whisker follicle, tooth and salivary gland. Distinct from the profiles of 11β-HSD1 and 11β-HSD2 mRNA, GR protein was detectable in all tissues at all ages studied except for the thymus, salivary gland, and bone. Taken together, the present study demonstrates that tissue- and developmentally-stage specific expression of 11β-HSD1 and 11β-HSD2 as well as GR occurs in the developing mouse embryo, thus highlighting the importance of these two enzymes and GR in regulating glucocorticoid-mediated maturational events in specific tissues during murine embryonic development.  相似文献   

13.
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) catalyzes the synthesis of 17β-estradiol (E2) from estrone, in the ovary and peripheral tissues. While the structures of 17β-HSD1 alone and in complex with E2 have been determined (D. Ghosh, V. Pletnev, D.-W. Zhu, Z. Wawrzak, W.-L. Duax, W. Pangborn, F. Labrie, S.-X. Lin, Structure of human 17β-hydroxysteroid dehydrogenase at 2.20 Å resolution, Structure 3 (1995) 503–513; A. Azzi, P.H. Rhese, D.-W. Zhu, R.L. Campbell, F. Labrie, S.-X. Lin, Crystal structure of human estrogenic 17β-hydroxysteroid dehydrogenase complexed with 17β-estradiol, Nature Struct. Biol. 3 (1996) 665–668, no structures of inhibitor/enzyme complex, either modeled or from crystallography, have been reported before the submission of the present paper. The best available inhibitors are among the ‘dual-site inhibitors’, blocking estrogenic 17β-HSD and the estrogen receptor. These compounds belong to a family of estradiol analogues having an halogen atom at the 16 position and an extended alkyl-amide chain at the 7 position (C. Labrie, G. Martel, J.M. Dufour, G. Levesque, Y. Merand, F. Labrie, Novel compounds inhibit estrogen formation and action, Cancer Res. 52 (1992) 610–615). We now report the crystallization of this enzyme/inhibitor complex. The complex of the best available dual-site inhibitor, EM-139, with 17β-HSD1 has been crystallized using both cocrystallization and soaking methods. Crystals are isomorphous to the native crystals grown in the presence of 0.06% β-octyl-glucoside and polyethyleneglycol 4000, with a monoclinic space group C2. Data at 1.8 Å have been collected from a synchrotron source. Even though the size of the inhibitor is greater than that of the substrate, our preliminary X-ray-diffraction study shows that EM-139 fits into the active site in a position similar to that of estrogen. The availability of such structural data will help design more potent inhibitors of estrogenic 17β-HSD.  相似文献   

14.
Both adipose and epithelial cells isolated from the mammary glands of pregnant and lactating rats show 11 beta-hydroxysteroid dehydrogenase (11-HSD) activity, as measured by conversion of corticosterone to 11-dehydrocorticosterone. Activity in adipose cells from pregnant rats is 3-fold higher than in lactating rats. Epithelial cells from pregnant rats show one-twentieth of the activity of adipose cells, and activity is lower still in epithelial cells from lactating rats. Explants incubated for 48 h extensively metabolized corticosterone to 11-dehydrocorticosterone, and to a much lesser extent to a second unknown metabolite which is found in tissue extracts but not conditioned medium. Mammary gland 11-HSD may thus constitute one of the physiological mechanisms preventing premature milk production in response to glucocorticoids.  相似文献   

15.
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays an important role in regulating the cortisol availability to bind to corticosteroid receptors within specific tissue. Recent advances in understanding the molecular mechanisms of metabolic syndrome indicate that elevation of cortisol levels within specific tissues through the action of 11β-HSD1 could contribute to the pathogenesis of this disease. Therefore, selective inhibitors of 11β-HSD1 have been investigated as potential treatments for metabolic diseases, such as diabetes mellitus type 2 or obesity. Here we report the discovery and synthesis of some 18β-glycyrrhetinic acid (18β-GA) derivatives (2–5) and their inhibitory activities against rat hepatic11β-HSD1 and rat renal 11β-HSD2. Once the selectivity over the rat type 2 enzyme was established, these compounds’ ability to inhibit human 11β-HSD1 was also evaluated using both radioimmunoassay (RIA) and homogeneous time resolved fluorescence (HTRF) methods. The 11-modified 18β-GA derivatives 2 and 3 with apparent selectivity for rat 11β-HSD1 showed a high percentage inhibition for human microsomal 11β-HSD1 at 10 μM and exhibited IC50 values of 400 and 1100 nM, respectively. The side chain modified 18β-GA derivatives 4 and 5, although showing selectivity for rat 11β-HSD1 inhibited human microsomal 11β-HSD1 with IC50 values in the low micromolar range.  相似文献   

16.
17.
Calcitriol exerts a diverse range of biological actions including the control of growth and cell differentiation, modulation of hormone secretion, and regulation of reproductive function. The placenta synthesizes calcitriol through the expression of CYP27B1, but little is known about local actions of this hormone in the fetoplacental unit. The objective of this study was to investigate the effects of calcitriol upon progesterone (P4) and estradiol (E2) secretion in trophoblasts cultured from term human placenta. Cells were incubated in the presence of calcitriol for 18 h and pregnenolone or androstenedione were subsequently added as substrates for the 3β-hydroxysteroid dehydrogenase (3β-HSD) or P450-aromatase (CYP19), respectively. Calcitriol stimulated in a dose-dependant manner E2 and P4 secretion. The use of a selective inhibitor of PKA prevented the effects of calcitriol upon E2 secretion, but not on P4. These results show that calcitriol is a physiological regulator of placental E2 and P4 production and suggest a novel role for calcitriol upon placental steroidogenesis.  相似文献   

18.
Sex steroids play a predominant role in the development and differentiation of normal mammary gland as well as in the regulation of hormone-sensitive breast cancer growth. There is evidence suggesting that local intracrine formation of sex steroids from inactive precursors secreted by the adrenals namely, dehydroepiandrosterone (DHEA) and 4-androstenedione (4-dione) play an important role in the regulation of growth and function of peripheral target tissues, including the breast. Moreover, human breast carcinomas are often infiltrated by stromal/immune cells secreting a wide spectra of cytokines. These might in turn regulate the activity of both immune and neoplastic cells. The present study was designed to examine the action of cytokines on 17β-hydroxysteroid dehydrogenase (17β-HSD) and 3β-hydroxysteroid dehydrogenase/isomerase (3β-HSD) activities in human breast cancer cells. The various types of human 17β-HSD (five types) and 3β-HSD (two types), because of their tissue- and cell-specific expression and substrate specificity, provide each cell with necessary mechanisms to control the level of intracellular active androgens and estrogens. We first investigated the effect of exposure to IL-4 and IL-6 on reductive and oxidative 17β-HSD activities in both intact ZR-75-1 and T-47D human breast cancer cells. In ZR-75-1 cells, a 6 d exposure to IL-4 and IL-6 decreased E2-induced cell proliferation, the half maximal inhibitory effect being exerted at 88 and 26 pM, respectively. In parallel, incubation with IL-4 and IL-6 increased oxidative 17β-HSD activity by 4.4- and 1.9-fold, respectively, this potent activity being observed at 50 values of 22.8 and 11.3 pM, respectively. Simultaneously, reductive 17β-HSD activity leading to E2 formation was decreased by 70 and 40% by IL-4 and IL-6, respectively. Moreover, IL-4 and IL-6 exerted the same regulatory effects on 17β-HSD activities when testosterone and 4-dione were used as substrates, thus strongly suggesting the expression of the type 2 17β-HSD ZR-75-1 cells. In contrast, in T-47D cells, IL-4 increased the formation of E2, whereas IL-6 exerts no effect on this parameter. However, we found that T-47D cells failed to convert testosterone efficiently into 4-DIONE, thus suggesting that there is little or no expression of type 2 17β-HSD in this cell line. The present findings demonstrate that the potent regulatory effects of IL-4 and IL-6 on 17β-HSD activities depend on the cell-specific gene expression of various types of 17β-HSD enzymes. We have also studied the effect of cytokines on the regulation of the 3β-HSD expression in both ZR-75-1 and T-47D human breast cancer cells. Under basal culture conditions, there is no 3β-HSD activity detectable in these cells. However, exposure to IL-4 caused a rapid and potent induction of 3β-HSD activity, whereas IL-6 failed to induce 3β-HSD expression. Our data thus demonstrate that cytokines may play a crucial role in sex steroid biosynthesis from inactive adrenal precursors in human breast cancer cells.  相似文献   

19.
Excessive foetal exposure to glucocorticoids retards growth and “programmes” adult hypertension in rats. Placental 11β-hydroxysteroid dehydrogenase (11β-HSD), which catalyses the conversion of corticosterone and cortisol to inert 11 keto-products, normally protects the foetus from excess maternal glucocorticoids. In both rats and humans there is considerable natural variation in placental 11β-HSD, and enzyme activity correlates with birth weight. Moreover, inhibition of placental 11β-HSD in the rat reduces birth weight and produces hypertensive adult offspring, many months after prenatal treatment with enzyme inhibitors; these effects are dependent upon maternal adrenal products. These data suggest that placental 11β-HSD, by regulating foetal exposure to maternal glucocorticoids, crucially determines foeto-placental growth and the programming of hypertension. Maternal protein restriction during pregnancy also produces hypertensive offspring and selectively attenuates placental 11β-HSD activity. Thus, deficiency of the placental barrier to maternal glucocorticoids may represent a common pathway between the maternal environment and foeto-placental programming of later disease. These data may, at least in part, explain the human epidemiological observations linking early life events to the risk of subsequent hypertension. The recent characterization, purification and cDNA cloning of a distinct human placental 11β-HSD (type 2) will aid the further study of these intriguing findings.  相似文献   

20.
It is well accepted that estradiol (E2) plays an important role in the genesis and evolution of breast cancer. Quantitative evaluation indicates that in human breast tumor, estrone sulfate (E1S) ‘via sulfatase’ is a much more likely precursor for E2 than is androstenedione ‘via aromatase’. In previous studies, it was demonstrated that in isolated MCF-7 and T-47D breast cancer cell lines, estradiol can block estrone sulfatase activity. In the present study, the effect of E2 was explored using total normal and cancerous breast tissues. This study was carried out with post-menopausal patients with breast cancer. None of the patients had a history of endocrine, metabolic or hepatic diseases or had received treatment in the previous 2 months. Each patient received local anaesthetic (lidocaine 1%) and two regions of the mammary tissue were selected: (A) the tumoral tissue and (B) the distant zone (glandular tissue) which was considered as normal. Samples were placed in liquid nitrogen and stored at –80 °C until enzyme activity analysis. Breast cancer histotypes were ductal and post-menopausal stages were T2. Homogenates of tumoral or normal breast tissues (45–75 mg) were incubated in 20 mM Tris–HCl, pH 7.2 with physiological concentrations of [3H]-E1S (5 × 10−9 M) alone or in the presence of E2 (5 × 10−5 to 5 × 10−7 M) during 30 min or 3 h. E1S, E1 and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. The sulfatase activity is significantly more intense with the breast cancer tissue than normal tissue, since the concentration of E1 was 3.20 ± 0.15 and 0.42 ± 0.07 pmol/mg protein, respectively after 30 min incubation. The values were 27.8 ± 1.8 and 3.5 ± 0.21 pmol/mg protein, respectively after 3 h incubation. Estradiol at the concentration of 5 × 10−7 M inhibits this conversion by 33% and 31% in cancerous and normal breast tissues, respectively and by 53% and 88% at the concentration of 5 × 10−5 M after 30 min incubation. The values were 24% and 18% for 5 × 10−7 M and 49% and 42% for 5 × 10−5 M, respectively after 3 h incubation. It was observed that [3H]-E1S is only converted to [3H]-E1 and not to [3H]-E2 in normal or cancerous breast tissues, which suggests a low or no 17β-hydroxysteroid dehydrogenase (17β-HSD) Type 1 reductive activity in these experimental conditions. In conclusion, estradiol is a strong anti-sulfatase agent in cancerous and normal breast tissues. This data can open attractive perspectives in clinical trials using this hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号