首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interfacial precipitation process to encapsulate mammalian cells in hydroxyethyl methacrylate-methyl methacrylate (HEMA-MMA) microcapsules of approximately 750 in approximately m diameter was previously described. It was not possible to produce smaller capsules due to low shearing force. A new droplet generation scheme was developed by suspending the cell and polymer co-extrusion nozzle in a uniform co-axial fluid jet which enabled the production of 300 to 600-microm diameter capsules. HepG2 hepatoma cells in 400-microm-diameter HEMA-MMA capsules were able to retain their metabolic activity during and after the encapsulation process. The in vitro secretion of plasma proteins alpha(1)-acid glycoprotein, alpha(1)-antitrypsin, and fibrinogen by the encapsulated cells was retained. The encapsulated cells secreted less fibrinogen (340 kD) relative to alpha(1)-acid glycoprotein (42kD), indicating the sieving effect (but not absolute cut-off) of the HEMA-MMA membrane. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
We investigated growth kinetics of microalgae, Chlorella vulgaris, in immobilized arrays of nanoliter‐scale microfluidic drops. These static drop arrays enabled simultaneous monitoring of growth of single as well as multiple cells encapsulated in individual droplets. To monitor the growth, individual drop volumes were kept nearly intact for more than a month by controlling the permeation of water in and out of the microfluidic device. The kinetic growth parameters were quantified by counting the increase in the number of cells in each drop over time. In addition to determining the kinetic parameters, the cell‐size distribution of the microalgae was correlated with different stages of the growth. The single‐cell growth kinetics of C. vulgaris showed significant heterogeneity. The specific growth rate ranged from 0.55 to 1.52 day?1 for different single cells grown in the same microfluidic device. In comparison, the specific growth rate in bulk‐scale experiment was 1.12 day?1. It was found that the average cell size changes significantly at different stages of the cell growth. The mean cell‐size increased from 5.99 ± 1.08 to 7.33 ± 1.3 µm from exponential to stationary growth phase. In particular, when multiple cells are grown in individual drops, we find that in the stationary growth phase, the cell size increases with the age of cell suggesting enhanced accumulation of fatty acids in older cells. Biotechnol. Bioeng. 2012; 109: 2987–2996. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Mixed population biofilms consisting of Pseudomonas aeruginosa, P. fluorescens, and Klebsiella pneumoniae were grown in a flow cell under turbulent conditions with a water flow velocity of 18 cm/s (Reynolds number, Re, =1192). After 7 days the biofilms were patchy and consisted of cell clusters and streamers (filamentous structures attached to the downstream edge of the clusters) separated by interstitial channels. The cell clusters ranged in size from 25 to 750 microm in diameter. The largest clusters were approximately 85 microm thick. The streamers, which were up to 3 mm long, oscillated laterally in the flow. The motion of the streamers was recorded at various flow velocities up to 50.5 cm/s (Re 3351) using confocal scanning laser microscopy. The resulting time traces were evaluated by image analysis and fast Fourier transform analysis (FFT). The amplitude of the motion increased with flow velocity in a sigmoidal shaped curve, reaching a plateau at an average fluid flow velocity of approximately 25 cm/s (Re 1656). The motion of the streamers was possibly limited by the flexibility of the biofilm material. FFT indicated that the frequency of oscillation was directly proportional to the average flow velocity (u(ave)) below 9.5 cm/s (Re 629). At u(ave) greater than 9.5 cm/s, oscillation frequencies were above our measurable frequency range (0.12-6.7 Hz). The oscillation frequency was related to the flow velocity by the Strouhal relationship, suggesting that the oscillations were possibly caused by vortex shedding from the upstream biofilm clusters. A loss coefficient (k) was used to assess the influence of biofilm accumulation on pressure drop. The k across the flow cell colonized with biofilm was 2.2 times greater than the k across a clean flow cell.  相似文献   

4.
This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ~10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ~60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ~15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.  相似文献   

5.
Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.  相似文献   

6.
We present a novel microfluidic system in which an aqueous two-phase laminar flow is stably formed, and the continuous partitioning of relatively large cells can be performed, eliminating the influence of gravity. In this study, plant cell aggregates whose diameters were 37-96 microm were used as model particles. We first performed cell partitioning using a simple straight microchannel having two inlets and two outlets and examined the effects of the flow rate and the phase width on partitioning efficiency. Second, by using a microchannel with a pinched segment, the partitioning efficiency was successfully improved. This microscale aqueous two-phase flow system can further be incorporated into micro total analysis systems (microTAS) or lab-on-a-chip technology, owing to its simplicity, applicability, and biocompatibility.  相似文献   

7.
Biomolecules and living cells can be printed in high‐resolution patterns to fabricate living constructs for tissue engineering. To evaluate the impact of processing cells with rapid prototyping (RP) methods, we modeled the printing phase of two RP systems that use biomaterial inks containing living cells: a high‐resolution inkjet system (BioJet) and a lower‐resolution nozzle‐based contact printing system (PAM2). In the first fabrication method, we reasoned that cell damage occurs principally during drop collision on the printing surface, in the second we hypothesize that shear stresses act on cells during extrusion (within the printing nozzle). The two cases were modeled changing the printing conditions: biomaterial substrate stiffness and volumetric flow rate, respectively, in BioJet and PAM2. Results show that during inkjet printing impact energies of about 10?8 J are transmitted to cells, whereas extrusion energies of the order of 10?11 J are exerted in direct printing. Viability tests of printed cells can be related to those numerical simulations, suggesting a threshold energy of 10?9 J to avoid permanent cell damage. To obtain well‐defined living constructs, a combination of these methods is proposed for the fabrication of scaffolds with controlled 3D architecture and spatial distribution of biomolecules and cells. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
We introduce a non‐contact approach to microprint multiple types of feeder cells in a microarray format using immiscible aqueous solutions of two biopolymers. Droplets of cell suspension in the denser aqueous phase are printed on a substrate residing within a bath of the immersion aqueous phase. Due to their affinity to the denser phase, cells remain localized within the drops and adhere to regions of the substrate underneath the drops. We show the utility of this technology for creating duplex heterocellular stem cell niches by printing two different support cell types on a gel surface and overlaying them with mouse embryonic stem cells (mESCs). As desired, the type of printed support cell spatially direct the fate of overlaid mESCs. Interestingly, we found that interspaced mESCs colonies on differentiation‐inducing feeder cells show enhanced neuronal differentiation and give rise to dense networks of neurons. This cell printing technology provides unprecedented capabilities to efficiently identify the role of various feeder cells in guiding the fate of stem cells. Biotechnol. Bioeng. 2011;108: 2509–2516. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
Understanding of particle strain and drop breakage is relevant for various technical applications. To analyze it, single drop experiments in a breakage cell and evolving drop size distributions in an agitated system are studied. The mechanisms for particle strain and drop breakage are assumed to be comparable for the investigated turbulent flow regime. The agitation process is simulated using a population balance model. This model provides transient prediction capacities at different scales and can be used for scale-up/down projects. The number and the size distributions of daughter fragments for single drops have been studied. The results clearly support the assumption of binary breakage. The most common assumption of a Gaussian distribution for the daughter drop size distribution could not be supported. The evolution of a breakage-dominated toluene/water system was then simulated using different daughter drop size distributions from literature. The computational results were compared with experimental values. All simulations were able to predict the transient Sauter mean diameter excellently but varied strongly in the results on the shape of the distribution. In agreement with the experimental single drop results, the use of a bimodal or a very broad bell-shaped distribution of the daughter drops is proposed for the simulations. Although these results were obtained in a particular vessel for a specific phase system, it can be applied to simulate transient multiphase systems at different scales. We would expect that the general trends observed in this study are comparable to various applications in multiphase bioreactors.  相似文献   

10.
In gene therapy, a number of viruses are currently being used as vectors to provide transient expression of therapeutic proteins. A drawback of using free virus is that it gives a potent immune response, which reduces gene transfer and limits re-administration. An alternative delivery system is to encapsulate the virus in poly(lactide-co-glycolide) (PLG) microspheres prior to administration. A recombinant adenovirus (Ad) expressing green fluorescent protein (GFP) was used to test the transduction efficiency of Ad encapsulated in microspheres on target cells. The number of infected cells that expressed GFP was measured by flow cytometry. It was demonstrated that encapsulated viral vectors could successfully transduce target cells with encapsulation efficiencies up to 23% and that the level of transduction could be controlled by varying both the quantity of microspheres and the amount of Ad in the microspheres. High transduction efficiencies and its recognized biocompatibility make PLG-encapsulated Ad an attractive alternative to the use of free virus in gene therapy applications. The infectivity of Ad was found to be significantly influenced by the processing conditions and changes in environmental factors. Free Ad and encapsulated Ad were able to infect both E1 complimenting cells (HEK 293) and non-complimenting cells (A549), with the viral expression in HEK 293 cells being 2.1 times greater than for A549 cells.  相似文献   

11.
We report the production of micrometer‐sized gas‐filled lipospheres using digital (droplet‐based) microfluidics technology for chemotherapeutic drug delivery. Advantages of on‐chip synthesis include a monodisperse size distribution (polydispersity index (σ) values of <5%) with consistent stability and uniform drug loading. Photolithography techniques are applied to fabricate novel PDMS‐based microfluidic devices that feature a combined dual hydrodynamic flow‐focusing region and expanding nozzle geometry with a narrow orifice. Spherical vehicles are formed through flow‐focusing by the self‐assembly of phospholipids to a lipid layer around the gas core, followed by a shear‐induced break off at the orifice. The encapsulation of an extra oil layer between the outer lipid shell and inner bubble gaseous core allows the transport of highly hydrophobic and toxic drugs at high concentrations. Doxorubicin (Dox) entrapment is estimated at 15 mg mL?1 of particles packed in a single ordered layer. In addition, the attachment of targeting ligands to the lipid shell allows for direct vehicle binding to cancer cells. Preliminary acoustic studies of these monodisperse gas lipospheres reveal a highly uniform echo correlation of greater than 95%. The potential exists for localized drug concentration and release with ultrasound energy. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

12.
Tissue and stem cell encapsulation andtransplantation were considered as promising tools in the treatment of patients with diabetes mellitus. The aim of this study was to evaluate the effect of microfluidic encapsulation on the differentiation of trabecular meshwork mesenchymal stem cells (TM-MSC), into insulin-producing cells (IPCs) both in vitro and in vivo. The presence of differentiated cells in microfibers (three dimensional [3D]) and tissue culture plates (TCPS; two dimensional [2D]) culture was evaluated by detecting mRNA and protein expression of pancreatic islet-specific markers as well as measuring insulin release of cells in response to glucose challenges. Finally, semi-differentiated cells in microfibers (3D) and 2D cultures were used to control the glucose level in diabetic rats. The results of this study showed that MSCs differentiated in alginate microfibers (fabricated by microfluidic device) express more Pdx-1 mRNA (1.938-fold, p-value: 0.0425) and Insulin mRNA (2.841-fold, p-value: 0.0001) compared with those cultured on TCPS. Furthermore, cell encapsulation in microfluidic derived microfibers decreased the level of blood glucose in diabetic rats. The approach used in this study showed the possibility of alginate microfibers as a matrix for differentiation of TM-MSCs (as a new source) into IPCs. In addition, it could minimize different steps in stem cell differentiation, handling, and encapsulation, which lead to loss of an unlimited number of cells.  相似文献   

13.
The inspiratory flow characteristics in a three-generation lung airway have been numerically investigated using a control volume method to solve the fully three-dimensional laminar Navier-Stokes equations. The three-generation airway is extracted from the fifth to seventh branches of the model of Weibel (Morphometry of the Human Lung, Academic Press, New York, Springer, Berlin, 1963) with in-plane and 90 degrees off-plane configurations. Computations are carried out in the Reynolds number range of 200-1600, corresponding to mouth-air breathing rates ranging from 0.27 to 2.16l/s, or an averaged height of a man breathing from quiet to vigorous state. Particular attention is paid to establishing relations between the Reynolds number and the overall flow characteristics, including flow patterns and pressure drop. The ratio of airflow rate through the medial branch to that of the lateral branch for an in-plane airway increases as Re(0.227). However, the total pressure drop coefficient varies as Re(-0.497) for an in-plane airway and as Re(-0.464) for an off-plane airway. These pressure drop results are in good agreement with the experimentally measured behavior of Re(-0.5) and are more accurate than the numerically determined behavior of Re(-0.61) assuming the airways to be approximated by two-dimensional channels.  相似文献   

14.
Cardiovascular disease is the leading cause of death worldwide, and current treatments are ineffective or unavailable to majority of patients. Engineered cardiac tissue (ECT) is a promising treatment to restore function to the damaged myocardium; however, for these treatments to become a reality, tissue fabrication must be amenable to scalable production and be used in suspension culture. Here, we have developed a low-cost and scalable emulsion-based method for producing ECT microspheres from poly(ethylene glycol) (PEG)–fibrinogen encapsulated mouse embryonic stem cells (mESCs). Cell-laden microspheres were formed via water-in-oil emulsification; encapsulation occurred by suspending the cells in hydrogel precursor solution at cell densities from 5 to 60 million cells/ml, adding to mineral oil and vortexing. Microsphere diameters ranged from 30 to 570 μm; size variability was decreased by the addition of 2% poly(ethylene glycol) diacrylate. Initial cell encapsulation density impacted the ability for mESCs to grow and differentiate, with the greatest success occurring at higher cell densities. Microspheres differentiated into dense spheroidal ECTs with spontaneous contractions occurring as early as Day 10 of cardiac differentiation; furthermore, these ECT microspheres exhibited appropriate temporal changes in gene expression and response to pharmacological stimuli. These results demonstrate the ability to use an emulsion approach to encapsulate pluripotent stem cells for use in microsphere-based cardiac differentiation.  相似文献   

15.
The milk whey is a by-product of the dairy industry with a relevant protein concentration which can be employed as a wall material in spray drying processes. In this work, milk whey was used to encapsulate high oleic palm oil (HOPO) nanoemulsions. The HOPO/whey ratio and the atomization system (two-fluid nozzle and rotary disc) had a significant influence in the capsule formation. In addition, the release of the oleic acid (AO) from HOPO was evaluated by dialysis bag method for powders obtained by both types of atomizers. Different powders were obtained with good physical properties (particle diameter: 6.1–18.8 μm, aw: 0.058–0.125, moisture: 0.86–2.39%, bulk density: 390–770 kg/m3, dissolution rate: 55–115s) from stable nanoemulsions with high encapsulation efficiencies (77 to 99%). On the other hand, the release percents of AO were 82.8 and 75.8% for the two-fluid nozzle and the rotary disc, respectively. The release was not completed in the tested time (7 h) due to stable HOPO-whey linkages, and the gradient that must be broken was higher. Aditionally, an inverse relation was found between diameter particle and AO release.  相似文献   

16.
Flow visualization using fluorescent microparticles and cell viability investigations are carried out to examine the mechanisms by which cells are seeded into scaffolds driven by surface acoustic waves. The former consists of observing both the external flow prior to the entry of the suspension into the scaffold and the internal flow within the scaffold pores. The latter involves micro‐CT (computed tomography) scans of the particle distributions within the seeded scaffolds and visual and quantitative methods to examine the morphology and proliferation ability of the irradiated cells. The results of these investigations elucidate the mechanisms by which particles are seeded, and hence provide valuable information that form the basis for optimizing this recently discovered method for rapid, efficient, and uniform scaffold cell seeding. Yeast cells are observed to maintain their size and morphology as well as their proliferation ability over 14 days after they are irradiated. The mammalian primary osteoblast cells tested also show little difference in their viability when exposed to the surface acoustic wave irradiation compared to a control set. Together, these provide initial feasibility results that demonstrate the surface acoustic wave technology as a viable seeding method without risk of denaturing the cells. Biotechnol. Bioeng. 2009;103: 387–401. © 2009 Wiley Periodicals, Inc.  相似文献   

17.

To encapsulate piperine (Pip), as a poor water-soluble bioactive compound, zein-sodium caseinate-xanthan gum (Z-SG-XG) nanocomplex was prepared as a colloidal delivery system. The effect of different parameters involved in complexation process, including concentration of proteins, polysaccharide, and Pip on the encapsulation efficiency of Pip, particle size and stability of the nanocomplexes was investigated. Powders obtained by freeze-drying of the colloidal solution had relatively uniform particles compared to those obtained from conventional drying system and showed well redispersibility in water. At the optimal condition, a stable and homogeneous nanocomplex with a mean particle size of 145.9 ± 2.7 nm, PDI of 0.27 ± 0.01, and ζ-potential of −39.7 ± 1.3 mV was obtained. The antioxidant activity of Pip was significantly improved by encapsulation into the Z-SC-XG nanocomplex. Also, the in vitro release of Pip from the synthesized nanocomplexes in phosphate-buffer saline (PBS) solution and simulated gastrointestinal fluids (SGIF) was investigated and the release kinetic was studied as well. The Pip/Z-SG-XG nanocomplex showed a slower release in SGIF compared to the free Pip and nanoparticles without XG and SC, while its antioxidant activity was remarkable. Results suggested a possible utilization of Z-SC-XG nanocomplex for improving the water solubility, bioavailability and storage stability of Pip.

  相似文献   

18.
Nanoliter scale microbioreactor array for quantitative cell biology   总被引:14,自引:0,他引:14  
A nanoliter scale microbioreactor array was designed for multiplexed quantitative cell biology. An addressable 8 x 8 array of three nanoliter chambers was demonstrated for observing the serum response of HeLa human cancer cells in 64 parallel cultures. The individual culture unit was designed with a "C" shaped ring that effectively decoupled the central cell growth regions from the outer fluid transport channels. The chamber layout mimics physiological tissue conditions by implementing an outer channel for convective "blood" flow that feeds cells through diffusion into the low shear "interstitial" space. The 2 microm opening at the base of the "C" ring established a differential fluidic resistance up to 3 orders of magnitude greater than the fluid transport channel within a single mold microfluidic device. Three-dimensional (3D) finite element simulation were used to predict fluid transport properties based on chamber dimensions and verified experimentally. The microbioreactor array provided a continuous flow culture environment with a Peclet number (0.02) and shear stress (0.01 Pa) that approximated in vivo tissue conditions without limiting mass transport (10 s nutrient turnover). This microfluidic design overcomes the major problems encountered in multiplexing nanoliter culture environments by enabling uniform cell loading, eliminating shear, and pressure stresses on cultured cells, providing stable control of fluidic addressing, and permitting continuous on-chip optical monitoring.  相似文献   

19.
Cell migration is highly sensitive to fluid shear stress (FSS) in blood flow or interstitial fluid flow. However, whether the FSS gradient can regulate the migration of cells remains unclear. In this work, we constructed a parallel-plate flow chamber with different FSS gradients and verified the gradient flow field by particle image velocimetry measurements and finite element analyses. We then investigated the effect of FSS magnitudes and gradients on the migration of osteoclast precursor RAW264.7 cells. Results showed that the cells sensed the FSS gradient and migrated toward the low-FSS region. This FSS gradient-induced migration tended to occur in low-FSS magnitudes and high gradients, e.g., the migration angle relative to flow direction was approximately 90° for 0.1 Pa FSS and 0.2 Pa mm?1 FSS gradient. When chemically inhibiting the calcium signaling pathways of the mechanosensitive cation channel, endoplasmic reticulum, phospholipase C, and extracellular calcium, the cell migration toward the low-FSS region was significantly reduced. This study may provide insights into the mechanism of the recruitment of osteoclast precursors at the site of bone resorption and of mechanical stimulation-induced bone remodeling.  相似文献   

20.
Next generation battery technology is rapidly evolving to meet the demand for higher power densities and smaller footprints through novel catalysts and battery architecture. We present a μ-scale, biological fuel cell which utilizes microbial electricity generation enabled by microfluidic flow control to produce power. The new fuel cell, the smallest of its kind, with a total volume of 0.3 μL, produces scalable and controllable electrical energy from organic matter which is sustained through microbial respiration and laminar flow separation of the electrolytes. Electrical currents are dependent on specific biofilm formation on the anode, the concentration of electron donor, and a diffusion-limited flow regime. A maximum current density of 18.40 ± 3.48 mA m(-2) (92 ± 17 A m(-3)) was produced by Geobacter sulfurreducens, and 25.42 mA m(-2) (127 A m(-3)) by Shewanella oneidensis. The μ-scale biological fuel cell introduces the necessary small size and fuel flexibility for applications in vivo and in situ sensors which may be remotely deployed and self-powered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号