首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
We report a study on the specification of the glomus, the filtration device of the amphibian pronephric kidney, using an explant culturing strategy in Xenopus laevis. Explants of presumptive pronephric mesoderm were dissected from embryos of mid-gastrula to swimming tadpole stages. These explants were cultured within ectodermal wraps and analysed by RT-PCR for the presence of the Wilm's Tumour-1 gene, xWT1, a marker specific for the glomus at the stages analysed, together with other mesodermal markers. We show that the glomus is specified at stage 12.5, the same stage at which pronephric tubules are specified. We have previously shown that pronephric duct is specified somewhat later, at stage 14. Furthermore, we have analysed the growth factor inducibility of the glomus in the presence or absence of retinoic acid (RA) by RT-PCR. We define for the first time the conditions under which these growth factors induce glomus tissue in animal cap tissue. Activin together with high concentrations of RA can induce glomus tissue from animal cap ectoderm. Unlike the pronephric tubules, the glomus can also be induced by FGF and RA.  相似文献   

3.
4.
The earliest form of embryonic kidney, the pronephros, consists of three components: glomus, tubule and duct. Treatment of the undifferentiated animal pole ectoderm of Xenopus laevis with activin A and retinoic acid (RA) induces formation of the pronephric tubule and glomus. In this study, the rate of induction of the pronephric duct, the third component of the pronephros, was investigated in animal caps treated with activin A and RA. Immunohistochemistry using pronephric duct-specific antibody 4A6 revealed that a high proportion of the treated explants contained 4A6-positive tubular structures. Electron microscopy showed that the tubules in the explants were similar to the pronephric ducts of normal larvae, and they also expressed Gremlin and c-ret, molecular markers for pronephric ducts. These results suggest that the treatment of Xenopus ectoderm with activin A and RA induces a high rate of differentiation of pronephric ducts, in addition to the differentiation of the pronephric tubule and glomus, and that this in vitro system can serve as a simple and effective model for analysis of the mechanism of pronephros differentiation.  相似文献   

5.
6.
7.
GOLPH3 is a phosphatidylinositol-4-phosphate (PI4P) effector that plays an important role in maintaining Golgi architecture and anterograde trafficking. GOLPH3 does so through its ability to link trans-Golgi membranes to F-actin via its interaction with myosin 18A (MYO18A). GOLPH3 also is known to be an oncogene commonly amplified in human cancers. GOLPH3L is a GOLPH3 paralogue found in all vertebrate genomes, although previously it was largely uncharacterized. Here we demonstrate that although GOLPH3 is ubiquitously expressed in mammalian cells, GOLPH3L is present in only a subset of tissues and cell types, particularly secretory tissues. We show that, like GOLPH3, GOLPH3L binds to PI4P, localizes to the Golgi as a consequence of its PI4P binding, and is required for efficient anterograde trafficking. Surprisingly, however, we find that perturbations of GOLPH3L expression produce effects on Golgi morphology that are opposite to those of GOLPH3 and MYO18A. GOLPH3L differs critically from GOLPH3 in that it is largely unable to bind to MYO18A. Our data demonstrate that despite their similarities, unexpectedly, GOLPH3L antagonizes GOLPH3/MYO18A at the Golgi.  相似文献   

8.
Kidney development is distinguished by the sequential formation of three structures of putatively equivalent function from the intermediate mesoderm, the pronephros, mesonephros, and metanephros. While these organs differ morphologically, their basic structural organization exhibits important similarities. The earliest form of the kidney, the pronephros, is the primary blood filtration and osmoregulatory organ of fish and amphibian larvae. Simple organization and rapid formation render the Xenopus pronephric kidney an ideal model for research on the molecular and cellular mechanisms dictating early kidney organogenesis. A prerequisite for this is the identification of genes critical for pronephric kidney development. This review describes the emerging framework of genes that act to establish the basic components of the pronephric kidney: the corpuscle, tubules, and the duct. Systematic analysis of marker gene expression, in temporal and spatial resolution, has begun to reveal the molecular anatomy underlying pronephric kidney development. Furthermore, the emerging evidence indicates extensive conservation of gene expression between pronephric and metanephric kidneys, underscoring the importance of the Xenopus pronephric kidney as a simple model for nephrogenesis. Given that Xenopus embryos allow for easy testing of gene function, the pathways that direct cell fate decisions in the intermediate mesoderm to make the diverse spectrum of cell types of the pronephric kidney may become unraveled in the future.  相似文献   

9.
In the vertebrate embryo, development of the excretory system is characterized by the successive formation of three distinct kidneys: the pronephros, mesonephros, and metanephros. While tubulogenesis in the metanephric kidney is critically dependent on the signaling molecule Wnt-4, it is unknown whether Wnt signaling is equally required for the formation of renal epithelia in the other embryonic kidney forms. We therefore investigated the expression of Wnt genes during the pronephric kidney development in Xenopus. Wnt4 was found to be associated with developing pronephric tubules, but was absent from the pronephric duct. Onset of pronephric Wnt-4 expression coincided with mesenchyme-to-epithelium transformation. To investigate Wnt-4 gene function, we performed gain- and loss-of-function experiments. Misexpression of Wnt4 in the intermediate and lateral mesoderm caused abnormal morphogenesis of the pronephric tubules, but was not sufficient to initiate ectopic tubule formation. We used a morpholino antisense oligonucleotide-based gene knockdown strategy to disrupt Wnt-4 gene function. Xenopus embryos injected with antisense Wnt-4 morpholinos developed normally, but marker gene and morphological analysis revealed a complete absence of pronephric tubules. Pronephric duct development was largely unaffected, indicating that ductogenesis may occur normally in the absence of pronephric tubules. Our results show that, as in the metanephric kidney, Wnt-4 is critically required for tubulogenesis in the pronephric kidney, indicating that a common, evolutionary conserved gene regulatory network may control tubulogenesis in different vertebrate excretory organs.  相似文献   

10.
Human Golgi phosphoprotein 2 gene (also known as GOLPH2, GP73 or GOLM1) encodes an epithelial-specific Golgi membrane protein which can be induced by virus infection. It is also overexpressed in a number of tumors and is currently considered as an early diagnosis marker for hepatocellular carcinoma. However, little is known about how GOLPH2 is dysregulated in these disease conditions and the functional implications of its overexpression. The aim of this study is to investigate human GOLPH2 regulation mechanisms. We cloned a 2599 bp promoter fragment of GOLPH2 and found it maintained epithelial specificity. By deletion analysis, a repressive region (-864 to -734 bp), a positive regulatory region (-734 to -421 bp) and a core promoter region (-421 to -79 bp) were identified. Sequence analysis revealed that GOLPH2 core promoter was devoid of canonical TATA element and classified as a TATA-less promoter. Adenoviral early region 1A (E1A) was able to activate GOLPH2 and the CtBP interaction domain of E1A was sufficient but not required for activation. A GC-box motif (-89 to -83 bp) in GOLPH2 core promoter region partly mediated E1A transactivation. These results delineated regulatory regions and functional element in GOLPH2 promoter, elucidated adenoviral E1A stimulation mechanisms and provided insight into GOLPH2 functions.  相似文献   

11.
We have previously shown that lmx1b, a LIM homeodomain protein, is expressed in the pronephric glomus. We now show temporal and spatial expression patterns of lmx1b and its potential binding partners in both dissected pronephric anlagen and in individual dissected components of stage 42 pronephroi. Morpholino oligonucleotide knock-down of lmx1b establishes a role for lmx1b in the development of the pronephric components. Depletion of lmx1b results in the formation of a glomus with reduced size. Pronephric tubules were also shown to be reduced in structure and/or coiling whereas more distal tubule structure was unaffected. Over-expression of lmx1b mRNA resulted in no significant phenotype. Given that lmx1b protein is known to function as a heterodimer, we have over-expressed lmx1b mRNA alone or in combination with potential interacting molecules and analysed the effects on kidney structures. Phenotypes observed by over-expression of lim1 and ldb1 are partially rescued by co-injection with lmx1b mRNA. Animal cap experiments confirm that co-injection of lmx1b with potential binding partners can up-regulate pronephric molecular markers suggesting that lmx1b lies upstream of wt1 in the gene network controlling glomus differentiation. This places lmx1b in a genetic hierarchy involved in pronephros development and suggests that it is the balance in levels of binding partners together with restricted expression domains of lmx1b and lim1 which influences differentiation into glomus or tubule derivatives in vivo.  相似文献   

12.
13.
The pronephros is a transient embryonic kidney that is essential for the survival of aquatic larvae. It is also absolutely critical for adult kidney development, as the pronephric derivative the wolffian duct forms the ductal system of the adult kidney and also triggers the condensation of metanephric mesenchyme into the adult nephrons. While exploring Xenopus pronephric patterning, we observed that epidermally delivered hedgehog completely suppresses pronephric kidney tubule development but does not effect development of the pronephric glomus, the equivalent of the mammalian glomerulus or corpuscle. This effect is not mediated by apoptosis. Microarray analysis of microdissected primordia identified FGF8 as one of the potential mediators of hedgehog action. Further investigation demonstrated that SU5402-sensitive FGF signaling plays a critical role in the very earliest stages of pronephric tubule development. Modulation of FGF8 activity using a morpholino has a later effect that blocks condensation of pronephric mesenchyme into the pronephric tubule. Together, these data show that FGF signaling plays a critical role at two stages of embryonic kidney development, one in the condensation of the pronephric primordium from the intermediate mesoderm and a second in the later epithelialization of this mesenchyme into the pronephric nephron. The data also show that in Xenopus, development of the glomus/glomerulus can be uncoupled from nephron formation via ectopic hedgehog expression and provides an experimental avenue for investigating glomerulogenesis in the complete absence of tubules.  相似文献   

14.
Abstract The Jun N-terminal kinase kinase kinase MLK2 is required for the formation of the pronephros during early Xenopus development. Here, we have used a yeast 2-hybrid screen to identify proteins that interact with and regulate xMLK2. Using an N-terminal polypeptide encompassing the SH3 and kinase domains of xMLK2 as bait, five independent cDNAs were identified, all of which encoded a Xenopus ubiquitin conjugating enzyme, ube2d3.2. Ube2d3.2 is a functional E2 enzyme expressed maternally and in a tissue-restricted fashion during development. Ectopic expression of ube2d3.2 inhibits formation of the pronephric tubules, resulting in a phenotype very similar to the loss of xMLK2 function. Because ube2d3.2 is also shown to limit accumulation of xMLK2, it is likely that this effect is direct, although other explanations are possible. Ube2d3.2 is thus probably an endogenous regulator of xMLK2, and hence of JNK activity.  相似文献   

15.
16.
Endoderm development is an area of intense interest in developmental biology, but progress has been hampered by the lack of specific markers for differentiated endodermal cells. In an unbiased secretion cloning screen of Xenopus gastrula embryos we isolated a novel gene, designated Darmin. Darmin encodes a secreted protein of 56 kDa containing a peptidase M20 domain characteristic of the glutamate carboxypeptidase group of zinc metalloproteases. We also identified homologous Darmin genes in other eukaryotes and in prokaryotes suggesting that Darmin is the founding member of a family of evolutionarily conserved proteins. Xenopus Darmin showed zygotic expression in the early endoderm and later became restricted to the midgut. By secretion cloning of Xenopus cleavage-stage embryos we isolated another novel protein, designated Darmin-related (Darmin-r) due to its sequence similarity with Darmin. Darmin-r was maternally expressed and showed at later stages expression in the lens and pronephric glomus. The endoderm-specific expression of Darmin makes this gene a useful marker for the study of endoderm development.  相似文献   

17.
The RNA-binding molecule Bicaudal-C regulates embryonic development in Drosophila and Xenopus. Interestingly, mouse mutants of Bicaudal-C do not show early patterning defects, but instead develop polycystic kidney disease (PKD). To further investigate the molecular mechanism of Bicaudal-C in kidney development, we analyzed its function in the developing amphibian pronephros. Bicaudal-C mRNA was present in the epithelial structures of the Xenopus pronephros, the tubules and the duct, but not the glomus. Inhibition of the translation of endogenous Bicaudal-C with antisense morpholino oligomers (xBic-C-MO) led to a PKD-like phenotype in Xenopus. Embryos lacking Bicaudal-C developed generalized edemas and dilated pronephric tubules and ducts. This phenotype was caused by impaired differentiation of the pronephros. Molecular markers specifically expressed in the late distal tubule were absent in xBic-C-MO-injected embryos. Furthermore, Bicaudal-C was not required for primary cilia formation, an important organelle affected in PKD. These data support the idea that Bicaudal-C functions downstream or parallel of a cilia-regulated signaling pathway. This pathway is required for terminal differentiation of the late distal tubule of the Xenopus pronephros and regulates renal epithelial cell differentiation, which--when disrupted--results in PKD.  相似文献   

18.
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis.  相似文献   

19.
The Iroquois (Irx) genes encode evolutionary conserved homeoproteins. We report that Xenopus genes Irx1 and Irx3 are expressed and required during different stages of Xenopus pronephros development. They are initially expressed during mid-neurulation in domains extending over most of the prospective pronephric territory. Expression onset takes place after kidney anlage specification, but before pronephric organogenesis occurs. Later, during nephron segmentation, expression becomes restricted to the intermediate tubule region of the proximal-distal axis. Loss- and gain-of-function analyses, performed with specific morpholinos and inducible wild-type and dominant-negative constructs, reveal a dual requirement for Irx1 and Irx3 during pronephros development. During neurula stages, these genes maintain the specification of the pronephric territory and define its size. This seems to occur, at least in part, through positive regulation of Bmp signalling. Subsequently, Irx genes are required for proper formation of the intermediate tubule. Finally, we find that retinoic acid signalling activates both Irx1 and Irx3 genes in the pronephros.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号