首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using newer vaccine platforms which have been effective against malaria in rodent models, we tested five immunization regimens against Plasmodium knowlesi in rhesus monkeys. All vaccines included the same four P. knowlesi antigens: the pre-erythrocytic antigens CSP, SSP2, and erythrocytic antigens AMA1, MSP1. We used four vaccine platforms for prime or boost vaccinations: plasmids (DNA), alphavirus replicons (VRP), attenuated adenovirus serotype 5 (Ad), or attenuated poxvirus (Pox). These four platforms combined to produce five different prime/boost vaccine regimens: Pox alone, VRP/Pox, VRP/Ad, Ad/Pox, and DNA/Pox. Five rhesus monkeys were immunized with each regimen, and five Control monkeys received a mock vaccination. The time to complete vaccinations was 420 days. All monkeys were challenged twice with 100 P. knowlesi sporozoites given IV. The first challenge was given 12 days after the last vaccination, and the monkeys receiving the DNA/Pox vaccine were the best protected, with 3/5 monkeys sterilely protected and 1/5 monkeys that self-cured its parasitemia. There was no protection in monkeys that received Pox malaria vaccine alone without previous priming. The second sporozoite challenge was given 4 months after the first. All 4 monkeys that were protected in the first challenge developed malaria in the second challenge. DNA, VRP and Ad5 vaccines all primed monkeys for strong immune responses after the Pox boost. We discuss the high level but short duration of protection in this experiment and the possible benefits of the long interval between prime and boost.  相似文献   

2.
《PloS one》2013,8(2)

Background

Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.

Methodology/Principal Findings

The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-γ ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408; AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-γ mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant.

Significance

The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection.

Trial Registration

ClinicalTrials.govNCT00870987.  相似文献   

3.
We have investigated the tumour therapeutic efficacy of homologous and heterologous prime-boost vaccine strategies against the 5T4 oncofoetal antigen, using both replication defective adenovirus expressing human 5T4 (Ad5T4), and retrovirally transduced DC lines (DCh5T4) in a subcutaneous B16 melanoma model (B16h5T4). In naïve mice we show that all vaccine combinations tested can provide significant tumour growth delay. While DCh5T4/Adh5T4 sequence is the best prophylactic regimen (P > 0.0001), it does not demonstrate any therapeutic efficacy in mice with established tumours. In active therapy the Adh5T4/DCh5T4 vaccination sequence is the best treatment regimen (P = 0.0045). In active therapy, we demonstrate that B16h5T4 tumour growth per se induces Th2 polarising immune responses against 5T4, and the success of subsequent vaccination is dependant on altering the polarizing immune responses from Th2 to Th1. We show that the first immunization with Adh5T4 can condition the mice to induce 5T4 specific Th1 immune responses, which can be sustained and subsequently boosted with DCh5T4. In contrast immunisation with DCh5T4 augments Th2 immune responses, such that a subsequent vaccination with Adh5T4 cannot rescue tumour growth. In this case the depletion of CD25+ regulatory cells after tumour challenge but before immunization can restore therapeutic efficacy. This study highlights that all vaccine vectors are not equal at generating TAA immune responses; in tumour bearing mice the capability of different vaccines to activate the most appropriate anti-tumour immune responses is greatly altered compared to what is found in naïve mice.  相似文献   

4.
Many candidate HIV vaccines are designed to primarily elicit T cell responses. Although repeated immunization with the same vaccine boosts Ab responses, the benefit for T cell responses is ill defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T cell responses, but increases gp140 Ab responses 10-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8(+) T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4(+) and CD8(+) T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination.  相似文献   

5.
Apical membrane Ag 1 (AMA1) is one of the leading candidate Ags for inclusion in a subunit vaccine against blood-stage malaria. However, the efficacy of Ab-inducing recombinant AMA1 protein vaccines in phase IIa/b clinical trials remains disappointing. In this article, we describe the development of recombinant human adenovirus serotype 5 and modified vaccinia virus Ankara vectors encoding AMA1 from the Plasmodium chabaudi chabaudi strain AS. These vectors, when used in a heterologous prime-boost regimen in BALB/c mice, are capable of inducing strong transgene-specific humoral and cellular immune responses. We show that this vaccination regimen is protective against a nonlethal P. chabaudi chabaudi strain AS blood-stage challenge, resulting in reduced peak parasitemias. The role of vaccine-induced, AMA1-specific Abs and T cells in mediating the antiparasite effect was investigated by in vivo depletion of CD4(+) T cells and adoptive-transfer studies into naive and immunodeficient mice. Depletion of CD4(+) T cells led to a loss of vaccine-induced protection. Adoptive-transfer studies confirmed that efficacy is mediated by both CD4(+) T cells and Abs functioning in the context of an intact immune system. Unlike previous studies, these results confirm that Ag-specific CD4(+) T cells, induced by a clinically relevant vaccine-delivery platform, can make a significant contribution to vaccine blood-stage efficacy in the P. chabaudi model. Given that cell-mediated immunity may also contribute to parasite control in human malaria, these data support the clinical development of viral-vectored vaccines that induce both T cell and Abs against Plasmodium falciparum blood-stage malaria Ags like AMA1.  相似文献   

6.
We compared the human immunodeficiency virus type 1 (HIV-1)-specific cellular immune responses elicited in nonhuman primates by HIV-1 gag-expressing replication-defective adenovirus serotype 5 (Ad5) or poxvirus vectors, used either alone or in combination with each other. The responses arising from a heterologous Ad5 priming-poxvirus boosting regimen were significantly greater than those elicited by homologous regimens with the individual vectors or by a heterologous poxvirus priming-Ad5 boosting regimen. The heterologous Ad5 priming-poxvirus boosting approach may have potential utility in humans as a means of inducing high levels of cellular immunity.  相似文献   

7.
An optimal vaccine against leishmaniasis should elicit parasite specific CD4+ and cytotoxic CD8+ T cells. In this investigation, we described a prime/boost immunization approach based on DNA and on poxvirus vectors (Western Reserve, WR, and the highly attenuated modified vaccinia virus Ankara, MVA), both expressing the LACK antigen of Leishmania infantum, that triggers different levels of specific CD8+ T cell responses and protection (reduction in lesion size and parasitemia) against L. major infection in mice. A prime/boost vaccination with DNA-LACK/MVA-LACK elicits higher CD8+ T cell responses than a similar protocol with the replication competent VV-LACK. Both CD4+ and CD8+ T cells were induced by DNA-LACK/MVA-LACK immunization. The levels of IFN-gamma and TNF-alpha secreting CD8+ T cells were higher in splenocytes from DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals. Moreover, protection against L. major was significantly higher in DNA-LACK/MVA-LACK than in DNA-LACK/VV-LACK immunized animals when boosted with the same virus dose, and correlated with high levels of IFN-gamma and TNF-alpha secreting CD8+ T cells. In DNA-LACK/MVA-LACK vaccinated animals, the extent of lesion size reduction ranged from 65 to 92% and this protection was maintained for at least 17 weeks after challenge with the parasite. These findings demonstrate that in heterologous prime/boost immunization approaches, the protocol DNA-LACK/MVA-LACK is superior to DNA-LACK/VV-LACK in triggering specific CD8+ T cell immune responses and in conferring protection against cutaneous leishmaniasis. Thus, MVA-LACK is a safe and efficient vector for vaccination against leishmaniasis.  相似文献   

8.
The cellular immunogenicity of formulated plasmid DNA and replication-defective human adenovirus serotype 5 (Ad5) vaccine vectors expressing a codon-optimized human immunodeficiency virus type 1 gag gene was examined in baboons. The Ad5 vaccine was capable of inducing consistently strong, long-lived CD8(+)-biased T-cell responses and in vitro cytotoxic activities. The DNA vaccine-elicited immune responses were weaker than those elicited by the Ad5 vaccine and highly variable; formulation with chemical adjuvants led to moderate increases in the levels of Gag-specific T cells. Increasing the DNA-primed responses with booster doses of either Ad5 or modified vaccinia virus Ankara vaccines suggests a difference in the relative levels of cytotoxic and helper responses. The implications of these results are discussed.  相似文献   

9.
The development of an effective malaria vaccine is a high global health priority. Vaccine vectors based on adenovirus type 5 are capable of generating robust and protective T cell and antibody responses in animal models and are currently being evaluated in clinical trials for HIV and malaria. They appear to be more effective in terms of inducing antigen-specific immune responses as compared with non-Ad5 serotype vectors. However, the high prevalence of neutralizing antibodies to Ad5 in the human population, particularly in the developing world, has the potential to limit the effectiveness of Ad5-based vaccines. We have generated novel Ad5-based vectors that precisely replace the hexon hypervariable regions with those derived from Ad43, a subgroup D serotype with low prevalence of neutralizing antibody in humans. We have demonstrated that these hexon-modified adenovectors are not neutralized efficiently by Ad5 neutralizing antibodies in vitro using sera from mice, rabbits and human volunteers. We have also generated hexon-modified adenovectors that express a rodent malaria parasite antigen, PyCSP, and demonstrated that they are as immunogenic as an unmodified vector. Furthermore, in contrast to the unmodified vector, the hexon-modified adenovectors induced robust T cell responses in mice with high levels of Ad5 neutralizing antibody. We also show that the hexon-modified vector can be combined with unmodified Ad5 vector in prime-boost regimens to induce protective responses in mice. Our data establish that these hexon-modified vectors are highly immunogenic even in the presence of pre-existing anti-adenovirus antibodies. These hexon-modified adenovectors may have advantages in sub-Saharan Africa where there is a high prevalence of Ad5 neutralizing antibody in the population.  相似文献   

10.
Identification of correlates of protection for infectious diseases including malaria is a major challenge and has become one of the main obstacles in developing effective vaccines. We investigated protection against liver-stage malaria conferred by vaccination with adenoviral (Ad) and modified vaccinia Ankara (MVA) vectors expressing pre-erythrocytic malaria Ags. By classifying CD8(+) T cells into effector, effector memory (T(EM)), and central memory subsets using CD62L and CD127 markers, we found striking differences in T cell memory generation. Although MVA induced accelerated central memory T cell generation, which could be efficiently boosted by subsequent Ad administration, it failed to protect against malaria. In contrast, Ad vectors, which permit persistent Ag delivery, elicit a prolonged effector T cell and T(EM) response that requires long intervals for an efficient boost. A preferential T(EM) phenotype was maintained in liver, blood, and spleen after Ad/MVA prime-boost regimens, and animals were protected against malaria sporozoite challenge. Blood CD8(+) T(EM) cells correlated with protection against malaria liver-stage infection, assessed by estimation of number of parasites emerging from the liver into the blood. The protective ability of Ag-specific T(EM) cells was confirmed by transfer experiments into naive recipient mice. Thus, we identify persistent CD8 T(EM) populations as essential for vaccine-induced pre-erythrocytic protection against malaria, a finding that has important implications for vaccine design.  相似文献   

11.
A Phase I trial conducted in 2009–2010 demonstrated that oral vaccination with a replication competent Ad4-H5 (A/Vietnam) vector with dosages ranging from 107-1011 viral particles was well tolerated. HA-specific T-cell responses were efficiently induced, but very limited hemagglutination-inhibiting (HI) humoral responses were measured. However, a single boost of Ad4-H5-Vtn vaccinated individuals with a unadjuvanted licensed H5N1 (A/Vietnam) subunit vaccine resulted in superior HI titers compared with unprimed subjects. In the current study, the impact of Ad4-H5 priming on the quality of the polyclonal humoral immune response was evaluated using a real-time kinetics assay by surface plasmon resonance (SPR). Total binding of serum polyclonal antibodies from the Ad4-H5-Vtn primed groups against both homologous H5N1-A/Vietnam/1194/2004 (clade 1) and heterologous A/Indonesia-5/2005 (clade 2.1) HA1 head domain was significantly higher compared with sera from individuals that received subunit H5N1 vaccination alone. SPR measurements also demonstrated that the antigen-antibody complex dissociation rates (a surrogate for antibody affinity) of serum antibodies against the HA1 of H5N1-A/Vietnam were significantly higher in the Ad4-H5 primed groups compared with those from the unprimed group. Furthermore, strong correlations were observed between the antibody affinities for HA1 (but not HA2) and the virus neutralization titers against the homologous strain and a panel of heterologous clade 2 H5N1 strains. These findings support the concept of oral prime-boost vaccine approaches against pandemic influenza to elicit long-term memory B cells with high affinity capable of rapid response to variant pandemic viruses likely to emerge and adapt to human transmissions.  相似文献   

12.
Most HIV-1 infections are thought to occur at mucosal surfaces during sexual contact. It has been hypothesized that vaccines delivered at mucosal surfaces may mediate better protection against HIV-1 than vaccines that are delivered systemically. To test this, rhesus macaques were vaccinated by intramuscular (i.m.) or intravaginal (ivag.) routes with helper-dependent adenoviral (HD-Ad) vectors expressing HIV-1 envelope. Macaques were first immunized intranasally with species C Ad serotype 5 (Ad5) prior to serotype-switching with species C HD-Ad6, Ad1, Ad5, and Ad2 vectors expressing env followed by rectal challenge with CCR5-tropic SHIV-SF162P3. Vaccination by the systemic route generated stronger systemic CD8 T cell responses in PBMC, but weaker mucosal responses. Conversely, mucosal immunization generated stronger CD4 T cell central memory (Tcm) responses in the colon. Intramuscular immunization generated higher levels of env-binding antibodies, but neither produced neutralizing or cytotoxic antibodies. After mucosal SHIV challenge, both groups controlled SHIV better than control animals. However, more animals in the ivag. group had lower viral set points than in in the i.m. group. These data suggest mucosal vaccination may have improve protection against sexually-transmitted HIV. These data also demonstrate that helper-dependent Ad vaccines can mediate robust vaccine responses in the face of prior immunity to Ad5 and during four rounds of adenovirus vaccination.  相似文献   

13.
In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T-cell responses tested from peripheral blood of the different groups, although responses were overall highest in nonpreexposed animals immunized with the chimpanzee Ad vectors. Preexisting immunity to AdHu5 completely inhibited induction of transgene product-specific antibodies by the AdHu5 vectors without affecting antibody responses to the chimpanzee vectors. Upon euthanasia, T-cell responses were tested from a number of tissues. Preexisting immunity to AdHu5, commonly found in humans, changed the homing pattern of vaccine-induced T cells. In AdHu5-preexposed animals vaccinated with the chimpanzee Ad vectors, frequencies of transgene-specific T cells were higher in spleens than in blood, and in most preexposed animals vaccinated either with AdHu5 vectors or chimpanzee adenovirus vectors, frequencies of such T cells were exceptionally high in livers. The latter results indicate that analysis of T-cell responses solely from blood mononuclear cells of vaccine recipients may not suffice to compare the potencies of different vaccine regimens.  相似文献   

14.
The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.  相似文献   

15.
We characterized prime-boost vaccine regimens using heterologous and homologous vector and gene inserts. Heterologous regimens offer a promising approach that focuses the cell-mediated immune response on the insert and away from vector-dominated responses. Ad35-GRIN/ENV (Ad35-GE) vaccine is comprised of two vectors containing sequences from HIV-1 subtype A gag, rt, int, nef (Ad35-GRIN) and env (Ad35-ENV). MVA-CMDR (MVA-C), MVA-KEA (MVA-K) and MVA-TZC (MVA-T) vaccines contain gag, env and pol genes from HIV-1 subtypes CRF01_AE, A and C, respectively. Balb/c mice were immunized with different heterologous and homologous vector and insert prime-boost combinations. HIV and vector-specific immune responses were quantified post-boost vaccination. Gag-specific IFN-γ ELISPOT, intracellular cytokine staining (ICS) (CD107a, IFN-γ, TNF-α and IL-2), pentamer staining and T-cell phenotyping were used to differentiate responses to inserts and vectors. Ad35-GE prime followed by boost with any of the recombinant MVA constructs (rMVA) induced CD8+ Gag-specific responses superior to Ad35-GE-Ad35-GE or rMVA-rMVA prime-boost combinations. Notably, there was a shift toward insert-focus responses using heterologous vector prime-boost regimens. Gag-specific central and effector memory T cells were generated more rapidly and in greater numbers in the heterologous compared to the homologous prime-boost regimens. These results suggest that heterologous prime-boost vaccination regimens enhance immunity by increasing the magnitude, onset and multifunctionality of the insert-specific cell-mediated immune response compared to homologous vaccination regimens. This study supports the rationale for testing heterologous prime-boost regimens in humans.  相似文献   

16.
Adenovirus (Ad) vaccine vectors have proven highly immunogenic in multiple experimental models, but the innate immune responses induced by these vectors remain poorly characterized. Here we report innate cytokine responses to 5 different Ad vectors in 26 rhesus monkeys. Vaccination with adenovirus serotype 35 (Ad35), Ad26, and Ad48 induced substantially higher levels of antiviral (gamma interferon [IFN-γ], 10-kDa gamma interferon-induced protein [IP-10]) and proinflammatory (interleukin 1 receptor antagonist [IL-1RA], IL-6) cytokines than vaccination with Ad5 on day 1 following immunization. In vitro studies with capsid chimeric vectors and receptor-blocking monoclonal antibodies suggested that fiber-receptor interactions, as well as other capsid components, were critical for triggering these innate responses. Moreover, multiple cell populations, including dendritic cells, monocytes/macrophages, and T lymphocytes, contributed to these innate cytokine profiles. These data demonstrate that Ad35, Ad26, and Ad48, which utilize CD46 as their primary cellular receptor, induce significantly greater innate cytokine responses than Ad5, which uses the coxsackievirus and adenovirus receptor (CAR). These differences in innate triggering result in markedly different immunologic milieus for the subsequent generation of adaptive immune responses by these vaccine vectors.  相似文献   

17.
A successful HIV vaccine may need to stimulate antiviral immunity in mucosal and systemic immune compartments, because HIV transmission occurs predominantly at mucosal sites. We report here the results of a combined DNA-modified vaccinia virus Ankara (MVA) vaccine approach that stimulated simian/human immunodeficiency virus (SHIV)-specific immune responses by vaccination at the nasal mucosa. Fifteen male rhesus macaques, divided into three groups, received three nasal vaccinations on day 1, wk 9, and wk 25 with a SHIV DNA plasmid producing noninfectious viral particles (group 1), or SHIV DNA plus IL-2/Ig DNA (group 2), or SHIV DNA plus IL-12 DNA (group 3). On wk 33, all macaques were boosted with rMVA expressing SIV Gag-Pol and HIV Env 89.6P, administered nasally. Humoral responses were evaluated by measuring SHIV-specific IgG and neutralizing Abs in plasma, and SHIV-specific IgA in rectal secretions. Cellular responses were monitored by evaluating blood-derived virus-specific IFN-gamma-secreting cells and TNF-alpha-expressing CD8+ T cells, and blood- and rectally derived p11C tetramer-positive T cells. Many of the vaccinated animals developed both mucosal and systemic humoral and cell-mediated anti-SHIV immune responses, although the responses were not homogenous among animals in the different groups. After rectal challenge of vaccinated and naive animals with SHIV89.6P, all animals became infected. However a subset, including all group 2 animals, were protected from CD4+ T cell loss and AIDS development. Taken together, these data indicate that nasal vaccination with SHIV-DNA plus IL-2/Ig DNA and rMVA can provide significant protection from disease progression.  相似文献   

18.
Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.  相似文献   

19.
Recombinant human adenovirus serotype 5 (HAd5V) vectors are gold standards of T-cell immunogenicity as they efficiently induce also humoral responses to exogenous antigens, in particular when used in prime-boost protocols. Some investigators have shown that pre-existing immunity to adenoviruses interferes with transduction by adenoviral vectors, but the actual extent of this interference is not known since it has been mostly studied in mice using unnatural routes of infection and virus doses. Here we studied the effects of HAd5V-specific immune responses induced by intranasal infection on the transduction efficiency of recombinant adenovirus vectors. Of interest, when HAd5V immunity was induced in mice by the natural respiratory route, the pre-existing immunity against HAd5V did not significantly interfere with the B and T-cell immune responses against the transgene products induced after a prime/boost inoculation protocol with a recombinant HAd5V-vector, as measured by ELISA and in vivo cytotoxic T-cell assays, respectively. We also correlated the levels of HAd5V-specific neutralizing antibodies (Ad5NAbs) induced in mice with the levels of Ad5NAb titers found in humans. The data indicate that approximately 60% of the human serum samples tested displayed Ad5NAb levels that could be overcome with a prime-boost vaccination protocol. These results suggest that recombinant HAd5V vectors are potentially useful for prime-boost vaccination strategies, at least when pre-existing immunity against HAd5V is at low or medium levels.  相似文献   

20.
T cell-mediated immune responses play an important role in the containment of HIV-1 replication. Therefore, an effective vaccine against HIV-1 should be able to elicit high frequencies of virus-specific CD8(+) and CD4(+) T cells. The highly attenuated poxvirus-based vaccine candidate, NYVAC-SIV-gag-pol-env (NYVAC-SIV-gpe), has been shown to induce and/or expand SIV-specific CD4(+) and CD8(+) T cell responses in both naive and infected macaques. In this study, the immunogenicity of NYVAC-SIV-gpe alone was compared with a combination regimen where priming with an optimized DNA-SIV-gag-env vaccine candidate was followed by a NYVAC-SIV-gpe boost. In macaques immunized with the prime-boost regimen, the extent and durability of CD8(+) T cell response to an immunodominant SIV gag epitope was increased and these animals recognized a broader array of subdominant SIV epitopes in the cytolytic assay. In addition, the prime-boost regimen significantly enhanced the proliferative responses to both SIV gag and env proteins. Thus, the combination of these vaccine modalities may represent a valuable strategy in the development of a vaccine for HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号