首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fully functional immune system is essential to protect the body against pathogens and other diseases, including cancer. Vesicular trafficking provides the correct localization of proteins within all cell types, but this process is most exquisitely controlled and coordinated in immune cells because of their specialized organelles and their requirement to respond to selected stimuli. More than 60 Rab GTPases play important roles in protein trafficking, but only five Rab-encoding genes have been associated with inherited human disorders, and only one of these (Rab27a) causes an immune defect. Mutations in RAB27A cause Griscelli Syndrome type 2 (GS2), an autosomal recessive disorder of pigmentation and severe immune deficiency. In lymphocytes, Munc13-4 is an effector of Rab27a, and mutations in the gene encoding this protein (UNC13D) cause Familial Hemophagocytic Lymphohistiocytosis Type 3 (FHL3). The immunological features of GS2 and FHL3 include neutropenia, thrombocytopenia, and immunodeficiency due to impaired function of cytotoxic lymphocytes. The small number of disorders caused by mutations in genes encoding Rabs could be due to their essential functions, where defects in these genes could be lethal. However, with the increasing use of next generation sequencing technologies, more mutations in genes encoding Rabs may be identified in the near future.  相似文献   

2.
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.  相似文献   

3.
Rab GTPase proteins are a kind of small GTP-binding proteins, which functions mainly focus on regulating interacellular trafficking pathways during vesicular transport. To date, 60 distinct human RAB proteins have been identified. RAB18 gene is discovered from endothelial cells. Its function is considered as endosomes and plasma membrane recycling. Research indicates RAB18 may relate to inflammation and some kinds of tumor. Here we report a splice variant of RAB18, which is 2571 bp in length and has an open reading frame coding a predicted 235 amino-acids protein. RT-PCR shows that the cDNA has different expression pattern with RAB18 and is highly expressed in testis.  相似文献   

4.
Zhou J  Fogelgren B  Wang Z  Roe BA  Biegel JA 《Gene》2000,241(1):133-141
We employed exon trapping and large-scale genomic sequence analysis of two bacterial artificial chromosome clones to isolate genes from the region between the IGLC and BCR in chromosome 22q11.2. At the time these studies were initiated, one previously identified gene, GNAZ, was known to map to this region. Two genes, RTDR1 and RAB36, were cloned from this portion of 22q11, which is heterozygously or homozygously deleted in pediatric rhabdoid tumors of the brain, kidney and soft tissues. RTDR1 is a novel gene with a slight homology to a yeast vacuolar protein. RAB36 is a member of the Rab family of proteins. A series of primary rhabdoid tumors with chromosome 22q11 deletions were screened for mutations in the coding sequences of RTDR1, GNAZ and RAB36, but did not demonstrate any disease-specific alterations. Recently, INI1, which maps to the distal portion of the deletion region in 22q11, was identified as the candidate rhabdoid tumor suppressor gene. Further studies of RTDR1 and RAB36 are required to determine whether their absence contributes to the progression of rhabdoid tumors. Alternatively, these genes may be candidates for other diseases that map to human chromosome 22.  相似文献   

5.
Osteoclasts are bone-resorbing multinucleated cells that undergo drastic changes in their polarization due to heavy vesicular trafficking during the resorption cycle. These events require the precise orchestration of membrane traffic in order to maintain the unique characteristics of the different membrane domains in osteoclasts. Rab proteins are small GTPases involved in regulation of most, if not all, steps of vesicle trafficking. The investigators studied RAB genes in human osteoclasts and found that at least 26 RABs were expressed in osteoclasts. Out of these, RAB13 gene expression was highly upregulated during differentiation of human peripheral blood monocytic cells into osteoclasts. To study its possible function in osteoclasts, the investigators performed immunolocalization studies for Rab13 and various known markers of osteoclast vesicular trafficking. Rab13 localized to small vesicular structures at the superior parts of the osteoclast between the trans-Golgi network and basolateral membrane domain. Rab13 localization suggests that it is not involved in endocytosis or transcytosis of bone degradation products. In addition, Rab13 did not associate with early endosomes or recycling endosomes labeled with EEA1 or TRITC-conjugated transferrin, respectively. Its involvement in glucose transporter traffic was excluded as well. It is suggested that Rab13 is associated with a putative secretory function in osteoclasts.  相似文献   

6.
Yip1p is the first identified Rab-interacting membrane protein and the founder member of the YIP1 family, with both orthologs and paralogs found in all eukaryotic genomes. The exact role of Yip1p is unclear; YIP1 is an essential gene and defective alleles severely disrupt membrane transport and inhibit ER vesicle budding. Yip1p has the ability to physically interact with Rab proteins and the nature of this interaction has led to suggestions that Yip1p may function in the process by which Rab proteins translocate between cytosol and membranes. In this study we have investigated the physiological requirements for Yip1p action. Yip1p function requires Rab-GDI and Rab proteins, and several mutations that abrogate Yip1p function lack Rab-interacting capability. We have previously shown that Yip1p in detergent extracts has the capability to physically interact with Rab proteins in a promiscuous manner; however, a genetic analysis that covers every yeast Rab reveals that the Rab requirement in vivo is exclusively confined to a subset of Rab proteins that are localized to the Golgi apparatus.  相似文献   

7.
Rab11a, Rab11b, and Rab25 in mammals are thought to comprise a subfamily of Rab proteins, although Rab25 has two amino acid differences in its effector domain. We have isolated and characterized the genomic sequences of murine Rab11a and Rab25 and compared them with those of previously characterized mammalian Rab genes. The Rab11a gene spans 29 kb and Rab25 spans 9 kb. The genes have TATA-less promoters, but contain GC-rich areas in their upstream 5' regions. Both genes have 5 exons, with the introns containing characteristic repeats. Rab11a has an unusually long 8. 5-kb fourth intron. The Rab11a and Rab25 genes are localized to chromosomes 9C and 3E3/F1, respectively. The overall organization of the Rab11a, Rab11b, and Rab25 genes is similar, with homologous exon-intron boundaries, and differs markedly from those of Rab3A and Rab1A. These results confirm that Rab11A, Rab11b, and Rab25 represent a closely related gene family.  相似文献   

8.
Rab7 and Rab34 are implicated in regulation of lysosomal morphology and they share a common effector referred to as the RILP (Rab-interacting lysosomal protein). Two novel proteins related to RILP were identified and are tentatively referred to as RLP1 and RLP2 (for RILP-like protein 1 and 2, respectively). Overexpression of RILP caused enlarged lysosomes that are positioned more centrally in the cell. However, the morphology and distribution of lysosomes were not affected by overexpression of either RLP1 or RLP2. The molecular basis for the effect of RILP on lysosomes was investigated, leading to the demonstration that a 62-residue region (amino acids 272-333) of RILP is necessary for RILP's role in regulating lysosomal morphology. Remarkably, transferring this 62-residue region unique to RILP into corresponding sites in RLP1 rendered the chimeric protein capable of regulating lysosome morphology. A correlation between the interaction with GTP-bound form of both Rab proteins and the capability of regulating lysosomes was established. These results define a unique region in RILP responsible for its specific role in regulating lysosomal morphology as well as in its interaction with Rab7 and Rab34.  相似文献   

9.
Rab proteins, a subfamily of the ras superfamily, are low molecular weight GTPases involved in the regulation of intracellular vesicular transport. Cloning of human RAB32 was recently described. Presently, we report the cloning and characterization of the mouse homologue of Rab32. We show that murine Rab32 exhibits a ubiquitous expression pattern, with tissue-specific variation in expression level. Three cell types with highly specialized organelles, melanocytes, platelets and mast cells, exhibit relatively high level of Rab32. We show that in murine amelanotic in vitro transformed melanocytes as well as in human amelanotic metastatic melanoma cell lines, the expression of Rab32 is markedly reduced or absent, in parallel with the loss of expression of two key enzymes for the production of melanin, tyrosinase and Tyrp1. Therefore, in both mouse and human systems, the expression of Rab32 correlates with the expression of genes involved in pigment production. However, in melanoma samples, amelanotic due to a mutation in the tyrosinase gene, the expression of Rab32 remains at levels comparable to those observed in pigmented melanoma samples. Finally, we observed co-localization of Rab32 and the melanosomal proteins, Tyrp1 and Dct, indicating an association of Rab32 with melanosomes. Based on these data, we propose the inclusion of Rab32 to the so-called melanocyte/platelet family of Rab proteins.  相似文献   

10.
Zhu J  Jiang Z  Gao F  Hu X  Zhou L  Chen J  Luo H  Sun J  Wu S  Han Y  Yin G  Chen M  Han Z  Li X  Huang Y  Zhang W  Zhou F  Chen T  Fa P  Wang Y  Sun L  Leng H  Sun F  Liu Y  Ye M  Yang H  Cai Z  Gui Y  Zhang X 《PloS one》2011,6(11):e28223
  相似文献   

11.
12.
Rab GTPases, intracellular traffic and disease.   总被引:13,自引:0,他引:13  
Membrane and protein traffic in the secretory and endocytic pathways is mediated by vesicular transport. Recent studies of certain key regulators of vesicular transport, the Rab GTPases, have linked Rab dysfunction to human disease. Mutations in Rab27a result in Griscelli syndrome, caused by defects in melanosome transport in melanocytes and loss of cytotoxic killing activity in Tcells. Other genetic diseases are caused by partial dysfunction of multiple Rab proteins resulting from mutations in general regulators of Rab activity; Rab escort protein-1 (choroideremia), Rab geranylgeranyl transferase (Hermansky-Pudlak syndrome) and Rab GDP dissociation inhibitor-alpha (X-linked mental retardation). In infectious diseases caused by intracellular microorganisms, the function of endocytic Rabs is altered either as part of host defences or as part of survival strategy of the pathogen. The human genome is predicted to contain 60 RAB genes, suggesting that future work could reveal further links between Rab dysfunction and disease.  相似文献   

13.
14.
Rab GTPases are key regulators of vesicular protein transport in both the endocytic and exocytic pathways. In endocytosis and recycling, Rab11 plays a role in receptor recycling to plasma membrane via the pericentriolar recycling compartment. However, little is known about the molecular requirements and partners that promote transport through Rab11-positive recycling endosomes. Here, we report a novel approach to reconstitute transport to immunoabsorbed recycling endosomes in vitro. We show that transport is temperature-, energy-, and time-dependent and requires the presence of Rab proteins, as it is inhibited by the Rab-interacting protein Rab GDP-dissociation inhibitor that removes Rab proteins from the membrane. Cytochalasin D, a drug that blocks actin polymerization, inhibits the in vitro assay, suggesting that transport to recycling endosomes depends on an intact actin cytoskeleton. Using an affinity chromatography approach we show the identification of Rab11-interacting proteins including actin that stimulate transport to recycling endosomes in vitro.  相似文献   

15.
Ypt and Rab GTPases: insight into functions through novel interactions.   总被引:23,自引:0,他引:23  
Ypt/Rab GTPases are key regulators of vesicular transport in eukaryotic cells. During the past two years, a number of new Ypt/Rab-interacting proteins have been identified and shown to serve as either upstream regulators or downstream effectors. Proteins that interact with these regulators and effectors of Ypt/Rabs have also been identified, and together they provide new insights into Ypt/Rab mechanisms of action. The picture that emerges from these studies suggests that Ypt/Rabs function in multiple and diverse aspects of vesicular transport. In addition, not only are Ypt/Rabs highly conserved, but their functions and interactions are as well. Interestingly, crosstalk among Ypt/Rabs and between Ypt/Rabs and other signaling factors, suggest the possibility of coordination of the individual vesicular transport steps and of the protein transport machinery with other cellular processes.  相似文献   

16.
17.
Fibroblast growth factor receptor 4 (FGFR4) plays important roles during development and in the adult to maintain tissue homeostasis. Moreover, overexpression of FGFR4 or activating mutations in FGFR4 has been identified as tumour‐promoting events in several forms of cancer. Endocytosis is important for regulation of signalling receptors and we have previously shown that FGFR4 is mainly localized to transferrin‐positive structures after ligand‐induced endocytosis. Here, using a cell line with a defined pericentriolar endocytic recycling compartment, we show that FGFR4 accumulates in this compartment after endocytosis. Furthermore, using classical recycling assays and a new, photoactivatable FGFR4‐PA‐GFP fusion protein combined with live‐cell imaging, we demonstrate that recycling of FGFR4 is dependent on Rab11. Upon Rab11b depletion, FGFR4 is trapped in the pericentriolar recycling compartment and the total levels of FGFR4 in cells are increased. Moreover, fibroblast growth factor 1 (FGF1)‐induced autophosphorylation of FGFR4 as well as phosphorylation of phospholipase C (PLC)‐γ is prolonged in cells depleted of Rab11. Interestingly, the activation of mitogen‐activated protein kinase and AKT pathways were not prolonged but rather reduced in Rab11‐depleted cells, indicating that recycling of FGFR4 is important for the nature of its signalling output. Thus, Rab11‐dependent recycling of FGFR4 maintains proper levels of FGFR4 in cells and regulates FGF1‐induced FGFR4 signalling.   相似文献   

18.
Co-ordination of Rab GTPase function has emerged as a crucial mechanism in the control of intracellular trafficking processes in eukaryotic cells. Here, we show that GRAB/Rab3IL1 [guanine nucleotide exchange factor for Rab3A; RAB3A interacting protein (rabin3)-like 1], a protein that has previously be shown to act as a GEF (guanine nucleotide exchange factor) for Rab3a, Rab8a and Rab8b, is also a binding partner for Rab11a and Rab11b, but not the closely related Rab25 GTPase. We demonstrate that exogenous expression of Rab11a and Rab11b shift GRAB’s distribution from the cytoplasm onto membranes. We find that the Rab11a/Rab11b-binding region of GRAB lies within its carboxy-terminus, a region distinct from its GEF domain and Rab3a-binding region. Finally, we describe a GRAB deletion mutant (GRABΔ223–228) that is deficient in Rab11-binding ability. These data identify GRAB as a dual Rab-binding protein that could potentially link Rab3 and Rab11 and/or Rab8 and Rab11-mediated intracellular trafficking processes.  相似文献   

19.
Rab7 is a small GTPase that controls transport to endocytic degradative compartments. Here we report the identification of a novel 45 kDa protein that specifically binds Rab7GTP at its C-terminus. This protein contains a domain comprising two coiled-coil regions typical of myosin-like proteins and is found mainly in the cytosol. We named it RILP (Rab-interacting lysosomal protein) since it can be recruited efficiently on late endosomal and lysosomal membranes by Rab7GTP. RILP-C33 (a truncated form of the protein lacking the N-terminal half) strongly inhibits epidermal growth factor and low-density lipoprotein degradation, and causes dispersion of lysosomes similarly to Rab7 dominant-negative mutants. More importantly, expression of RILP reverses/prevents the effects of Rab7 dominant-negative mutants. All these data are consistent with a model in which RILP represents a downstream effector for Rab7 and both proteins act together in the regulation of late endocytic traffic.  相似文献   

20.
Rab proteins are small GTP-ases localized to distinct membrane compartments in eukaryotic cells and regulating specific steps of intracellular vesicular membrane traffic. The Rab7 protein is localized to the late endosomal compartment and controls late steps of endocytosis. We have isolated, by library screening, the 5′ region, including the promoter, of the mouse Rab7 gene and a Rab7 pseudogene. We have mapped, by genetic linkage analysis, the mouse Rab7 gene on Chromosome (Chr) 6 and the Rab7-ps1 pseudogene on Chr 9, where the Rab7 gene has been previously reported to map. By radiation hybrid mapping, we have located the human RAB7 gene on Chr 3, in a region homologous to the mouse Chr 6, where the Rab7 gene maps. Received: 27 October 1997 / Accepted: 1 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号