共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Neointimal hyperplasia is a prominent pathological phenomenon in the process of stent restenosis. Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play major pathological processes involved in the development of restenosis. l-Theanine, one of the major amino acid components in green tea, has been reported to improve vascular function. Here we display the effects of l-theanine on neointima formation and the underlying mechanism. In the rat carotid-artery balloon-injury model, l-theanine greatly inhibited neointima formation and prevented VSMCs from a contractile phenotype switching to a synthetic phenotype. In vitro study showed that l-theanine significantly inhibited PDGF-BB-induced VSMC proliferation and migration, which was comparable with the effect of l-theanine on AngII-induced VSMC proliferation and migration. Western blot analysis demonstrated that l-theanine suppressed PDGF-BB and AngII-induced reduction of SMA and SM22α and increment of OPN, suggesting that l-theanine inhibited the transformation of VSMCs from contractile to the synthetic phenotype. Further experiments showed that l-theanine exhibits potential preventive effects on neointimal hyperplasia and related vascular remodeling via inhibition of phosphorylation of Elk-1 and activation of MAPK1. The present study provides the new experimental evidence that l-theanine has potential clinical application as an anti-restenosis agent for the prevention of restenosis. 相似文献
3.
4.
Yoshitaka Iso Sayaka Usui Masashi Toyoda Jeffrey L. Spees Akihiro Umezawa Hiroshi Suzuki 《Biochemistry and Biophysics Reports》2018
We investigated whether mesenchymal stem cell (MSC)-based treatment could inhibit neointimal hyperplasia in a rat model of carotid arterial injury and explored potential mechanisms underlying the positive effects of MSC therapy on vascular remodeling/repair. Sprague-Dawley rats underwent balloon injury to their right carotid arteries. After 2 days, we administered cultured MSCs from bone marrow of GFP-transgenic rats (0.8 × 106 cells, n = 10) or vehicle (controls, n = 10) to adventitial sites of the injured arteries. As an additional control, some rats received a higher dose of MSCs by systemic infusion (3 × 106 cells, tail vein; n = 4). Local vascular MSC administration significantly prevented neointimal hyperplasia (intima/media ratio) and reduced the percentage of Ki67 + proliferating cells in arterial walls by 14 days after treatment, despite little evidence of long-term MSC engraftment. Notably, systemic MSC infusion did not alter neointimal formation. By immunohistochemistry, compared with neointimal cells of controls, cells in MSC-treated arteries expressed reduced levels of embryonic myosin heavy chain and RM-4, an inflammatory cell marker. In the presence of platelet-derived growth factor (PDGF-BB), conditioned medium from MSCs increased p27 protein levels and significantly attenuated VSMC proliferation in culture. Furthermore, MSC-conditioned medium suppressed the expression of inflammatory cytokines and RM-4 in PDGF-BB-treated VSMCs. Thus, perivascular administration of MSCs may improve restenosis after vascular injury through paracrine effects that modulate VSMC inflammatory phenotype. 相似文献
5.
6.
7.
Dai Sik Ko Junho Kang Hye Jin Heo Eun Kyoung Kim Kihun Kim Jin Mo Kang YunJae Jung Seung Eun Baek Yun Hak Kim 《International journal of biological sciences》2022,18(13):5154
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (, GSE28829, GSE43292, and GSE100927), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis. GSE120521相似文献
8.
Yeh JL Liou SF Chang YP Lin SW Liu TS Wu BN Chen IJ Wu JR 《Journal of biomedical science》2008,15(3):375-389
The purpose of this study was to determine the efficacy and the possible mechanism of action of the synthesized drug isoeugenodilol
(a new third-generation β-adrenoceptor blocker) on the growth factor-induced proliferation of cultured rat vascular smooth
muscle cells (VSMCs) and neointimal formation in a rat carotid arterial balloon injury model. Isoeugenodilol significantly
inhibited 10% FBS, 20 ng/ml PDGF-BB, and 20 ng/ml vascular endothelial growth factor (VEGF)-induced proliferation. In accordance
with these findings, isoeugenodilol revealed blocking of the FBS-inducible progression through the G0/G1 to the S phase of the cell cycle in synchronized cells. Neointimal formation, measured 14 days after injury, was reduced
by the oral administration of isoeugenodilol (10 mg/kg/day). In an in vitro assay, isoeugenodilol inhibited the migration
of VSMCs stimulated by PDGF-BB. These findings indicate that isoeugenodilol shows an inhibitory potency on neointimal formation
due to inhibition of both migration and proliferation of VSMCs. In addition, isoeugenodilol in concentration-dependent manner
decreased the levels of phosphorylated ERK1/2 in both VSMCs and balloon-injured carotid arteries. The levels of phosphorylated
MEK1/2 and Pyk2 as well as intracellular Ca2+ and reactive oxygen species (ROS) were in concentration-dependent manner reduced by isoeugenodilol. Taken together, these
results indicate that isoeugenodilol may suppress mitogen-stimulated proliferation and migration partially through inhibiting
cellular ROS and calcium, and hence, through activation of the Pyk2-ERK1/2 signal pathway. This suggests that isoeugenodilol
has potential for the prevention of atherosclerosis and restenosis. 相似文献
9.
Wang SH Liang CJ Weng YW Chen YH Hsu HY Chien HF Tsai JS Tseng YC Li CY Chen YL 《Journal of cellular physiology》2012,227(8):3063-3071
Ganoderma lucidum is used in traditional Chinese medicine to prevent or treat a variety of diseases, including cardiovascular disorders. We previously demonstrated that a glucan‐containing extract of Reishi polysaccharides (EORP) has the potent anti‐inflammatory action of reducing ICAM‐1 expression in lipopolysaccharide (LPS)‐treated human aortic smooth muscle cells (HASMCs) and LPS‐treated mice. In the present study, we examined whether EORP inhibited platelet‐derived growth factor‐BB (PDGF)‐stimulated HASMC proliferation and the mechanism involved. EORP dose‐dependently reduced cell numbers and DNA synthesis of PDGF‐treated HASMCs in vitro. EORP also arrested cell cycle progression in the G0/G1 phase, and this was associated with decreased expression of cyclin D1, cyclin E, CDK2, CDK4, and p21Cip1 and upregulation of the cyclin‐dependent kinase inhibitor p27Kip1. The anti‐proliferative effect of EORP was partly mediated by downregulation of PDGF‐induced JNK phosphorylation. In in vivo studies, the femoral artery of C57BL/6 mice was endothelial‐denuded and the mice were fed a diet containing 100 mg/kg/day of EORP. On day 14, both cell proliferation (proliferating cell nuclear antigen‐positive cells) in the neointima and the neointima/media area ratio (0.67 ± 0.03 vs. 1.46 ± 0.30) were significantly reduced. Our data show that EORP interferes with the mitogenic activation of JNK, preventing entry of HASMCs into the cell cycle in vitro and reducing cell proliferation in the neointima and decreasing the neointimal area in vivo. Thus, EORP may represent a safe and effective novel approach to the prevention and treatment of vascular proliferative diseases. J. Cell. Physiol. 227: 3063–3071, 2012. © 2011 Wiley Periodicals, Inc. 相似文献
10.
11.
12.
Maruyama T Hatakeyama S Miwa T Nishimori K 《Bioscience, biotechnology, and biochemistry》2007,71(4):1103-1106
Tissue-specific gene deletion by the Cre-loxp system is a powerful tool to investigate the roles of specific genes. To determine the specificity and efficiency of the Cre-mediated recombination under the control of the human smooth muscle alpha-actin promoter, we mated SMalphaA-Cre mice and R26R reporter mice. Cre-mediated recombination was observed in visceral and vascular smooth muscle cells. Partial recombination was also found in heart and musculoskeletal connective tissues. Highly efficient recombination was found in cranial sutures. Hence, we propose that SMalphaA-Cre mice are good tool for conditionally deleting gene function in the cranial suture in addition to smooth muscle cells. 相似文献
13.
14.
《Phytomedicine》2021
BackgroundNeointimal formation, mediated by the proliferation and migration of vascular smooth muscle cells (VSMCs), is a common pathological basis for atherosclerosis and restenosis. Myricetin, a natural flavonoid, reportedly exerts anti-atherosclerotic effects. However, the effect and mechanism of myricetin on VSMCs proliferation and migration and neointimal hyperplasia (NIH) remain unknown.PurposeWe investigated myricetin's effect on NIH, as well as the potential involvement of transforming growth factor-beta receptor 1 (TGFBR1) signaling in mediating myricetin's anti-atherosclerotic and anti-restenotic actions.MethodsMyricetin's effects on the proliferation and migration of HASMCs and A7R5 cells were determined by CCK-8, EdU assays, wound healing, Transwell assays, and western blotting (WB).Molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance (SPR) and TGFBR1 kinase activity assays were employed to investigate the interaction between myricetin and TGFBR1. An adenovirus vector encoding TGFBR1 was used to verify the effects of myricetin. In vivo, the left common carotid artery (LCCA) ligation mouse model was adopted to determine the impacts of myricetin on neointimal formation and TGFBR1 activation.ResultsMyricetin dose-dependently inhibited the migration and proliferation in VSMCs, suppressed the expression of CDK4, cyclin D3, MMP2, and MMP9. Molecular docking revealed that myricetin binds to key regions for TGFBR1 antagonist binding, and the binding energy was -9.61 kcal/mol. MD simulation indicated stable binding between TGFBR1 and myricetin. Additionally, SPR revealed an equilibrium dissociation constant of 4.35 × 10−5 M between myricetin and TGFBR1. According to the TGFBR1 kinase activity assay, myricetin directly inhibited TGFBR1 kinase activity (IC50 = 8.551 μM). Furthermore, myricetin suppressed the phosphorylation level of TGFBR1, Smad2, and Smad3 in a dose-dependent pattern, which was partially inhibited by TGFBR1 overexpression. Consistently, TGFBR1 overexpression partially rescued the suppressive roles of myricetin on VSMCs migration and proliferation. Moreover, myricetin dramatically inhibited NIH and reduced TGFBR1, Smad2, and Smad3 phosphorylation in the LCCA.ConclusionThis is the first study to demonstrate that myricetin suppresses NIH and VSMC proliferation and migration via inhibiting TGFBR1 signaling. Myricetin can be developed as a potential therapeutic candidate for treating atherosclerosis and vascular restenosis. 相似文献
15.
Kim TJ Kang YJ Lim Y Lee HW Bae K Lee YS Yoo JM Yoo HS Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders. 相似文献
16.
17.
Cytomegalovirus aggravates intimal hyperplasia in rats by stimulating smooth muscle cell proliferation 总被引:3,自引:0,他引:3
Kloppenburg G de Graaf R Herngreen S Grauls G Bruggeman C Stassen F 《Microbes and infection / Institut Pasteur》2005,7(2):164-170
Epidemiological and animal studies suggest a role for cytomegalovirus (CMV) in restenosis. Previously, we demonstrated that proliferating smooth muscle cells (SMCs) in the injured arterial wall are particularly susceptible to CMV-induced effects. Therefore, we hypothesised that, depending on the time point of infection after vascular injury, CMV infection may affect cell proliferation either in the media or in the neointima, thereby aggravating the process of restenosis. In the present study, we focused on the individual layers of the arterial wall by evaluating, besides the neointima-to-media ratio, the medial and neointimal area and cellularity in the rat femoral artery. Vascular injury was photochemically induced in rat femoral arteries. Immediately or 14 days thereafter, rats were infected with rat CMV (RCMV) or mock infected. The presence of RCMV in the vascular wall was determined at 3, 5, 14 and 35 days after infection by quantitative real-time PCR. When rats were infected immediately after injury, a significant increase was seen only in the medial but not in the neointimal cross-sectional area. On the other hand, when rats were infected 14 days after the initial injury, a significant increase was only seen in the neointimal area, thereby confirming our hypothesis that RCMV infection primary affects proliferating SMCs. As the mean number of SMCs per microm2 in both cell layers was unchanged despite an increase in cross-sectional area, this implies that RCMV stimulated SMC proliferation. Furthermore, these vascular effects were observed without the virus being abundantly present in the vascular wall, suggesting that inflammatory and immune-mediated responses to RCMV infection are more important in aggravating the response to vascular injury than the virus itself. 相似文献
18.
Basi DL Adhikari N Mariash A Li Q Kao E Mullegama SV Hall JL 《American journal of physiology. Heart and circulatory physiology》2007,292(1):H516-H521
Redox factor-1 (Ref-1) is a multifunctional protein that regulates redox, DNA repair, and the response to cell stress. We previously demonstrated that Ref-1(+/-) mice exhibit a significantly reduced Ref-1 mRNA and protein levels within the vasculature, which are associated with increased oxidative stress. The goal of this study was to test the hypothesis that partial loss of Ref-1 altered the cellular response to vascular injury. Fourteen days after femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in Ref-1(+/-) mice compared with that in wild-type mice (P < 0.01). Bromodeoxyuridine labeling and transferase-mediated dUTP nick-end labeling staining at 14 days did not differ in the Ref-1(+/-) mice. In vitro studies found no significant changes in either serum-induced proliferation or baseline apoptosis in Ref-1(+/-) vascular smooth muscle cells. Exposure to Fas ligand; however, did result in increased susceptibility of Ref-1(+/-) vascular smooth muscle cells to apoptosis (P < 0.001). Ref-1(+/-) mice exhibited an increase in circulating baseline levels of IL-10, IL-1alpha, and VEGF compared with those in wild-type mice but a marked impairment in these pathways in response to injury. In sum, loss of a single allele of Ref-1 is sufficient to reduce intimal lesion formation and to alter circulating cytokine and growth factor expression. 相似文献
19.
Vascular smooth muscle cell expression of ectonucleotidase CD39 (ENTPD1) is required for neointimal formation in mice 下载免费PDF全文
Amir Behdad Xiaofeng Sun Zain Khalpey Keiichi Enjyoji Marcia Wink Yan Wu Anny Usheva Simon C. Robson 《Purinergic signalling》2009,5(3):335-342
Vascular smooth muscle cell (VSMC) migration and proliferation are critical steps in the pathogenesis of atherosclerosis,
post-angioplasty restenosis, neointimal hyperplasia, and chronic allograft rejection. Extracellular nucleotides are known
to influence both migration and proliferation of VSMC. Although it is well established that vascular endothelial Cd39/ENTPD1
regulates blood nucleotide concentrations, whether Cd39 associated with VSMC also impacts vascular wall pathology has not
been investigated. The objective of this paper is to determine levels of expression of Cd39 on VSMC and functional consequences
of gene deletion in vitro and in vivo. Cd39 is the major ectonucleotidase in VSMC, as shown by substantive decreases in ecto-ATPase
and -ADPase activity in Cd39-null cells compared to wild type. Significant decreases in neointimal lesion formation are observed
in Cd39-null mice at 21 days post arterial balloon injury. Stimulated Cd39-null VSMC have pronounced proliferative responses
in vitro. However, using Transwell systems, we show that Cd39-null VSMC fail to migrate in response to ATP, UTP, and PDGF.
Cd39 is the dominant ectonucleotidase expressed by VSMC. Deletion of Cd39 in mice results in decreased neointimal formation
after vascular injury and is associated with impaired VSMC migration responses in vitro. 相似文献
20.
Chen J Han Y Lin C Zhen Y Song X Teng S Chen C Chen Y Zhang Y Hui R 《Biochemical and biophysical research communications》2005,329(3):976-983
In this study, we determined the role of PDGF-D, a new member of the PDGF family, in a rat model of balloon injured artery made with a 2F catheter in Sprague-Dawley male rats. PDGF-D expression was studied in the injured and control segments of abdominal aorta. The function of PDGF-D was evaluated in rat vascular smooth muscle cells stably transfected with PDGF-D gene. We found that in normal abdominal aorta, PDGF-D was highly expressed in adventia, moderate in endothelia, and unidentified in media. Stable transfection of PDGF-D gene into vascular smooth muscle cells increased the cell migration by 2.2-fold, and the proliferation by 2.3-fold, respectively, and MMP-2 production and activity as well. These results support the fact that PDGF-D is involved in the formation of neointimal hyperplasia induced by balloon catheter injury and may serve as a target in preventing vascular restenosis after coronary angioplasty. 相似文献