首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-random distributions of missing data are a general problem for likelihood-based statistical analyses, including those in a phylogenetic context. Extensive non-randomly distributed missing data are particularly problematic in supermatrix analyses that include many terminals and/or loci. It has been widely reported that missing data can lead to loss of resolution, but only very rarely create misleading or otherwise unsupported results in a parsimony context. Yet this does not hold for all parametric-based analyses because of their assumption of homogeneity across characters and lineages, which can lead to both long-branch attraction and long-branch repulsion. Contrived examples were used to demonstrate that non-random distributions of missing data, even without rate heterogeneity among characters and a well fitting model, can provide misleading likelihood-based topologies and branch-support values that are radically unstable based on slight modifications to character sampling. The same can occur despite complete absence of parsimony-informative characters. Otherwise unsupported resolution and high branch support for these clades were found to occur frequently in 22 empirical examples derived from a published supermatrix. Partitioning characters based on the distribution of missing data helped to decrease, but did not eliminate, these artifacts. These artifacts were exacerbated by low quality tree searches, particularly when holding only a single optimal tree that must be fully resolved.  相似文献   

2.
A 650-bp portion of the nuclear ribosomal DNA internal transcribed spacer region was sequenced in 47 species of Pinus, representing all recognized subsections of the genus, and 2 species of Picea and Cathaya as outgroups. Parsimony analyses of these length variable sequences were conducted using a manual alignment, 13 different automated alignments, elision of the automated alignments, and exclusion of all alignment ambiguous sites. High and moderately supported clades were consistently resolved across the different analyses, while poorly supported clades were inconsistently recovered. Comparison of the topologies highlights taxa of particularly problematic placement including Pinus nelsonii and P. aristata. Within subgenus Pinus, there is moderate support for the monophyly of a narrowly circumscribed subsect. Pinus (=subsect. Sylvestres) and strong support for a clade of North and Central American hard pines. The Himalayan P. roxburghii may be sister species to these "New World hard pines," which have two well-supported subgroups, subsect. Ponderosae and a clade of the remaining five subsections. The position of subsect. Contortae conflicts with its placement in a chloroplast DNA restriction site study. Within subgenus Strobus there is consistent support for the monophyly of a broadly circumscribed subsect. Strobi (including P. krempfii and a polyphyletic subsect. Cembrae) derived from a paraphyletic grade of the remaining soft pines. Relationships among subsects. Gerardianae, Cembroides, and Balfourianae are poorly resolved. Support for the monophyly of subgenus Pinus and subgenus Strobus is not consistently obtained.  相似文献   

3.
Approximately 3000 bp across 84 taxa have been analyzed for variable regions of RPB1, RPB2, and nLSU-rDNA to infer phylogenetic relationships in the large ectomycorrhizal mushroom genus Inocybe (Agaricales; Basidiomycota). This study represents the first effort to combine variable regions of RPB1 and RPB2 with nLSU-rDNA for low-level phylogenetic studies in mushroom-forming fungi. Combination of the three loci increases non-parametric bootstrap support, Bayesian posterior probabilities, and resolution for numerous clades compared to separate gene analyses. These data suggest the evolution of at least five major lineages in Inocybe-the Inocybe clade, the Mallocybe clade, the Auritella clade, the Inosperma clade, and the Pseudosperma clade. Additionally, many clades nested within each major lineage are strongly supported. These results also suggest the family Crepiodataceae sensu stricto is sister to Inocybe. Recognition of Inocybe at the family level, the Inocybaceae, is recommended.  相似文献   

4.
Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino-Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

5.
Genes selected for a phylogenetic study need to contain conserved information that reflects the phylogenetic history at the specific taxonomic level of interest. Mitochondrial ribosomal genes have been used for a wide range of phylogenetic questions in general and in anuran systematics in particular. We checked the plausibility of phylogenetic reconstructions in anurans that were built from commonly used 12S and 16S rRNA gene sequences. For up to 27 species arranged in taxon sets of graded inclusiveness, we inferred phylogenetic hypotheses based on different a priori decisions, i.e. choice of alignment method and alignment parameters, including/excluding variable sites, choice of reconstruction algorithm and models of evolution. Alignment methods and parameters, as well as taxon sampling all had notable effects on the results leading to a large number of conflicting topologies. Very few nodes were supported in all of the analyses. Data sets in which fast evolving and ambiguously aligned sites had been excluded performed worse than the complete data sets. There was moderate support for the monophyly of the Discoglossidae, Pelobatoidea, Pelobatidae and Pipidae. The clade Neobatrachia was robustly supported and the intrageneric relationships within Bombina and Discoglossus were well resolved indicating the usefulness of the genes for relatively recent phylogenetic events. Although 12S and 16S rRNA genes seem to carry some phylogenetic signal of deep (Mesozoic) splitting events the signal was not strong enough to resolve consistently the inter‐relationships of major clades within the Anura under varied methods and parameter settings.  相似文献   

6.
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.  相似文献   

7.
基于核基因c-mos的鸫亚科部分鸟类系统发生关系   总被引:1,自引:1,他引:0  
采用分子系统学方法对鸫亚科Turdinae 11属21种鸟类的核基因c-mos进行了系统发生分析.所测序列经对位排列后共572个位点,其中核苷酸变异位点111个,简约信息位点71个.以太平鸟Bombycilla garrulus作外群,采用邻接法、最大简约法和最大似然法分别构建其系统发生树.重建的系统发生树显示:所研究鸫亚科21种鸟类分成2个支系,第1个支系包括鸫属Turdus和地鸫属Zoothera.第2个支系包括红尾鸲属Phoenicurus、矶鸫属Monticola、水鸲属Rhyacornis、鸲属Tarsiger、溪鸲属Chainarrornis、石即鸟属Saxicola、燕尾属Enivurus、歌鸲属Luscinia和鹊鸲属Copsychus.红尾鸲属为并系类群,水鸲属和溪鸲属聚到这一支系;歌鸲属与燕尾属互为姐妹群,再与鸲属聚合构成另一支系;宝兴歌鸫Turdus mupinensis独立于鸫属及地鸫属之外,形成单独一个分支.  相似文献   

8.
Shibataea is a genus of temperate bamboos(Poaceae:Bambusoideae)endemic to China,but little is known about its phylogenetic position and interspecific relationships.To elucidate the phylogenetic relationship of the bamboo genus Shibataea,we performed genome-scale phylogenetic analysis of all seven species and one variety of the genus using double digest restriction-site associated DNA sequencing(dd RAD-seq)and whole plastid genomes generated using genome skimming.Our phylogenomic analyses based on dd RAD-seq and plastome data congruently recovered Shibataea as monophyletic.The nuclear data resolved S.hispida as the earliest diverged species,followed by S.chinensis,while the rest of Shibataea can be further divided into two clades.However,the plastid and nuclear topologies conflict significantly.By comparing the results of network analysis and topologies reconstructed from different datasets,we identify S.kumasasa as the most admixed species,which may be caused by incomplete lineage sorting(ILS)or interspecific gene flow with four sympatric species.This study highlights the power of dd RAD and plastome data in resolving complex relationships in the intractable bamboo genus.  相似文献   

9.
Abstract Nuclear-encoded SSU rDNA sequences have been obtained from 64 strains of conjugating green algae (Zygnemophyceae, Streptophyta, Viridiplantae). Molecular phylogenetic analyses of 90 SSU rDNA sequences of Viridiplantae (inciuding 78 from the Zygnemophyceae) were performed using complex evolutionary models and maximum likelihood, distance, and maximum parsimony methods. The significance of the results was tested by bootstrap analyses, deletion of long-branch taxa, relative rate tests, and Kishino–Hasegawa tests with user-defined trees. All results support the monophyly of the class Zygnemophyceae and of the order Desmidiales. The second order, Zygnematales, forms a series of early-branching clades in paraphyletic succession, with the two traditional families Mesotaeniaceae and Zygnemataceae not recovered as lineages. Instead, a long-branch Spirogyra/Sirogonium clade and the later-diverging Netrium and Roya clades represent independent clades. Within the order Desmidiales, the families Gonatozygaceae and Closteriaceae are monophyletic, whereas the Peniaceae (represented only by Penium margaritaceum) and the Desmidiaceae represent a single weakly supported lineage. Within the Desmidiaceae short internal branches and varying rates of sequence evolution among taxa reduce the phylogenetic resolution significantly. The SSU rDNA-based phylogeny is largely congruent with a published analysis of the rbcL phylogeny of the Zygnemophyceae (McCourt et al. 2000) and is also in general agreement with classification schemes based on cell wall ultrastructure. The extended taxon sampling at the subgenus level provides solid evidence that many genera in the Zygnemophyceae are not monophyletic and that the genus concept in the group needs to be revised.  相似文献   

10.
This study analyzed 76 species of Carnivora using a concatenated sequence of 6243 bp from six genes (nuclear TR-i-I, TBG, and IRBP; mitochondrial ND2, CYTB, and 12S rRNA), representing the most comprehensive sampling yet undertaken for reconstructing the phylogeny of this clade. Maximum parsimony and Bayesian methods were remarkably congruent in topologies observed and in nodal support measures. We recovered all of the higher level carnivoran clades that had been robustly supported in previous analyses (by analyses of morphological and molecular data), including the monophyly of Caniformia, Feliformia, Arctoidea, Pinnipedia, Musteloidea, Procyonidae + Mustelidae sensu stricto, and a clade of (Hyaenidae + (Herpestidae + Malagasy carnivorans)). All of the traditional "families," with the exception of Viverridae and Mustelidae, were robustly supported as monophyletic groups. We further have determined the relative positions of the major lineages within the Caniformia, which previous studies could not resolve, including the first robust support for the phylogenetic position of marine carnivorans (Pinnipedia) within the Arctoidea (as the sister-group to musteloids [sensu lato], with ursids as their sister group). Within the pinnipeds, Odobenidae (walrus) was more closely allied with otariids (sea lions/fur seals) than with phocids ("true" seals). In addition, we recovered a monophyletic clade of skunks and stink badgers (Mephitidae) and resolved the topology of musteloid interrelationships as: Ailurus (Mephitidae (Procyonidae, Mustelidae [sensu stricto])). This pattern of interrelationships of living caniforms suggests a novel inference that large body size may have been the primitive condition for Arctoidea, with secondary size reduction evolving later in some musteloids. Within Mustelidae, Bayesian analyses are unambiguous in supporting otter monophyly (Lutrinae), and in both MP and Bayesian analyses Martes is paraphyletic with respect to Gulo and Eira, as has been observed in some previous molecular studies. Within Feliformia, we have confirmed that Nandinia is the outgroup to all other extant feliforms, and that the Malagasy Carnivora are a monophyletic clade closely allied with the mongooses (Herpestidae [sensu stricto]). Although the monophyly of each of the three major feliform clades (Viverridae sensu stricto, Felidae, and the clade of Hyaenidae + (Herpestidae + Malagasy carnivorans)) is robust in all of our analyses, the relative phylogenetic positions of these three lineages is not resolvable at present. Our analyses document the monophyly of the "social mongooses," strengthening evidence for a single origin of eusociality within the Herpestidae. For a single caniform node, the position of pinnipeds relative to Ursidae and Musteloidea, parsimony analyses of data for the entire Carnivora did not replicate the robust support observed for both parsimony and Bayesian analyses of the caniform ingroup alone. More detailed analyses and these results demonstrate that outgroup choice can have a considerable effect on the strength of support for a particular topology. Therefore, the use of exemplar taxa as proxies for entire clades with diverse evolutionary histories should be approached with caution.The Bayesian analysis likelihood functions generally were better able to reconstruct phylogenetic relationships (increased resolution and more robust support for various nodes) than parsimony analyses when incompletely sampled taxa were included. Bayesian analyses were not immune, however, to the effects of missing data; lower resolution and support in those analyses likely arise from non-overlap of gene sequence data among less well-sampled taxa. These issues are a concern for similar studies, in which different gene sequences are concatenated in an effort to increase resolving power.  相似文献   

11.
The interaction between figs and fig pollinators is one of the most species-specific mutualisms. Recently, phylogenies of both partners based on molecular data provided insights into a wide spectrum of co-evolutionary questions. However, for the phylogeny of fig pollinators, there are some discrepancies between different studies and left some relationships unresolved, especially for deep nodes. The phylogenetic uncertainties of pollinators prohibit our further understanding of the history of the mutualism. Here, we present phylogenetic analyses of a larger COI sequence dataset that includes previously published datasets and our sequences from 20 species using Bayesian method and maximum parsimony. The analyses using different methods share similar topologies. Bayesian analyses provide high level of confidence for most internal nodes in terms of posterior probability. This study also clarifies some discrepancies between previous studies. After rooting with Tetrapus, other pollinators split into two clades. Wiebesia and Blastophaga are at basal positions in respective clade. Ceratosolen is not monophyletic because Kradibia and Liporrhopalum fall inside this group. Three subgenera of Ceratosolen: subgen. Ceratosolen, subgen. Rothropus, and subgen. Strepitus are not supported. Therefore, Ceratosolen is suggested to be re-divided into three groups. Urostigma pollinators (including Dolichoris and Blastophaga psenes) are clustered together. The monophylies of Wiebesia, Blastophaga, Dolichoris are not supported in this analysis. This study also provides a new framework for re-evaluating character evolution and re-inspecting the definition of some genera.  相似文献   

12.
旋花科是一个世界广布的类群,具有丰富的形态特征和重要的经济价值。然而,目前该科主要分支或族间的系统发育关系问题一直未解决。为解析旋花科内系统发育关系,该研究代表性选取旋花科内8个族40个物种,基于质体全基因组数据,使用最大似然法和贝叶斯推论进行系统发育分析。结果表明:(1)旋花科质体基因组均为四分体结构,质体基因组大小为113 273~164 112 bp,蛋白质编码基因数目为66~79个。(2)基于五种DNA矩阵(即WCG、CDS、LSC、IR、SSC)的系统发育分析结果显示,WCG矩阵和CDS矩阵的拓扑结构基本一致,仅少数分支的支持率略有差异;LSC矩阵和WCG矩阵的拓扑结构差异在于菟丝子族、马蹄金族和盐帚花族的系统位置;AU检验和SH检验结果显示,WCG矩阵和SSC矩阵与IR矩阵的拓扑结构有显著冲突。(3)所有系统发育分析结果均显示,菟丝子属和马蹄金族都包括在旋花亚科内,应处理为族等级。(4)基于WCG矩阵和CDS矩阵较好地解决了旋花科8个族之间的系统发育关系,即心被藤族和丁公藤族聚为一支,最先从旋花亚科分化出来,随后是菟丝子族,剩下的5个族分成2个分支。(5)系统发育基因组分析...  相似文献   

13.
Recent molecular studies addressing the phylogenetic relationships of avian orders have had conflicting results. While studies using nuclear DNA sequences tend to support traditional taxonomic views, also supported by morphological data [(paleognaths (galloanseres (all other birds)))], with songbirds forming a clade within Neoaves (all other birds), analyses with complete mtDNA genomes have resulted in topologies that place songbirds as one of the earliest-diverging avian lineages. Considering that over half of the extant bird species are songbirds, these different results have very different implications for our understanding of avian evolution. We analyzed data sets comprising nearly 4 kb of mitochondrial DNA (mtDNA) (complete 12S, ND1, ND2, and cytochrome b) plus 600 bp of the nuclear gene c-mos for 15 birds that were chosen to represent all major avian clades and to minimize potential long-branch attraction problems; we used a partition-specific maximum likelihood approach. Our results show congruence with respect to the ingroup among phylogenies obtained with mtDNA and the nuclear gene c-mos, separately or combined. The data sets support a traditional avian taxonomy, with paleognaths (ratites and tinamous) occupying a basal position and with songbirds more derived and forming a monophyletic group. We also show that, for mtDNA studies, turtles may be a better outgroup for birds than crocodilians because of their slower rate of sequence evolution.  相似文献   

14.
Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data   总被引:3,自引:0,他引:3  
DNA sequence data from the chloroplast noncoding rpl16 intron are used to address phylogenetic relationships among the major lineages of the grass family, with particular emphasis on the highly heterogeneous subfamily Bambusoideae and the basal lineages. Thirty-five grass sequences representing all six currently recognized major groups of the family and one outgroup sequence were analyzed using both parsimony and distance methods. The phylogenetic analyses indicated: (1) Puelia, a traditionally isolated bambusoid genus, is the most basal lineage in the BOP clade (Bambusoideae, Oryzoideae, and Pooideae); (2) the bambusoid clade is a sister group to the pooid clade; and (3) the monophyletic oryzoid clade is well separated from the bambusoid clade. The study further confirmed the recognition of two primary groups in the grass family: the BOP clade and the PACC clade (Panicoideae, Arundinoideae, Chloridoideae, and Centothecoideae); it also provided further evidence that the traditional subfamily Bambusoideae is highly heterogeneous and phylogenetically unacceptable. The data support Streptochaeteae, Anomochloeae, and Phareae as the most basal lineages among the extant grasses. Within the BOP clade, oryzoids and pooids are confirmed as two monophyletic clades, but the bambusoid clade, including only the woody bamboo tribe Bambuseae and the herbaceous bamboo tribe Olyreae, is relatively weakly supported. The study also indicated that the chloroplast noncoding region sequence data could be useful in phylogenetic analysis at relatively high taxonomic levels.  相似文献   

15.
Homobasidiomycetes include approximately 13,000 described species of mushroom-forming fungi and related taxa. The higher-level classification of this ecologically important group has been unsettled for over 100 years. The goals of the present study were to evaluate a recent phylogenetic classification by Hibbett and Thorn that divided the homobasidiomycetes into eight major unranked clades, and to infer the higher-order relationships among these clades. A dataset of 93 species that represent all eight previously recognized clades was assembled, with 3800 bp of sequence data from nuclear and mitochondrial large and small subunit rDNAs for each taxon. Parsimony and maximum-likelihood analyses support the monophyly of the eight major clades recognized by Hibbett and Thorn. Most groups are strongly supported in bootstrapped parsimony analyses, but the polyporoid clade remains weakly supported. For the first time, the sister-group relationship of the euagarics clade and bolete clade is strongly supported, and the Hygrophoraceae is strongly supported as the sister group of the rest of the euagarics clade. Nevertheless, the backbone of the homobasidiomycete phylogeny, and the internal structure of several clades, remain poorly resolved.  相似文献   

16.
Phylogenetic studies based on different types and treatment of data provide substantially conflicting hypotheses of relationships among seed plants. We conducted phylogenetic analyses of sequences of two highly conserved chloroplast genes, psaA and psbB, for a comprehensive taxonomic sample of seed plants and land plants. Parsimony analyses of two different codon position partitions resulted in well-supported, but significantly conflicting, phylogenetic trees. First and second codon positions place angiosperms and gymnosperms as sister clades and Gnetales as sister to Pinaceae. Third positions place Gnetales as sister to all other seed plants. Maximum likelihood trees for the two partitions are also in conflict. Relationships among the main seed plant clades according to first and second positions are similar to those found in parsimony analysis for the same data, but the third position maximum likelihood tree is substantially different from the corresponding parsimony tree, although it agrees partially with the first and second position trees in placing Gnetales as the sister group of Pinaceae. Our results document high rate heterogeneity among lineages, which, together with the greater average rate of substitution for third positions, may reduce phylogenetic signal due to long-branch attraction in parsimony reconstructions. Whereas resolution of relationships among major seed plant clades remains pending, this study provides increased support for relationships within major seed plant clades.  相似文献   

17.
While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea, and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca, and Typha), a water lily (Nuphar), a ranunculid (Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein data sets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiosperm phylogeny. However, their relative positions proved to be dependent on the method of analysis, with parsimony favoring Amborella as sister to all other angiosperms and maximum likelihood (ML) and neighbor-joining methods favoring an Amborella + Nymphaeales clade as sister. The ML phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single-gene phylogenies, estimated divergence dates, and conflicting indel characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiosperm phylogeny. Molecular dating analyses provided median age estimates of 161 MYA for the most recent common ancestor (MRCA) of all extant angiosperms and 145 MYA for the MRCA of monocots, magnoliids, and eudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction might mislead genome-scale phylogenetic analyses.  相似文献   

18.
The plastid-bearing members of the Cryptophyta contain two functional eukaryotic genomes of different phylogenetic origin, residing in the nucleus and in the nucleomorph, respectively. These widespread and diverse protists thus offer a unique opportunity to study the coevolution of two different eukaryotic genomes within one group of organisms. In this study, the SSU rRNA genes of both genomes were PCR-amplified with specific primers and phylogenetic analyses were performed on different data sets using different evolutionary models. The results show that the composition of the principal clades obtained from the phylogenetic analyses of both genes was largely congruent, but striking differences in evolutionary rates were observed. These affected the topologies of the nuclear and nucleomorph phylogenies differently, resulting in long-branch attraction artifacts when simple evolutionary models were applied. Deletion of long-branch taxa stabilized the internal branching order in both phylogenies and resulted in a completely resolved topology in the nucleomorph phylogeny. A comparison of the tree topologies derived from SSU rDNA sequences with characters previously used in cryptophyte systematics revealed that the biliprotein type was congruent, but the type of inner periplast component incongruent, with the molecular trees. The latter is indicative of a hidden cellular dimorphism (cells with two periplast types present in a single clonal strain) of presumably widespread occurrence throughout cryptophyte diversity, which, in consequence, has far-reaching implications for cryptophyte systematics as it is practiced today.  相似文献   

19.
Poor phylogenetic resolution and inconsistency of gene trees are major complications when attempting to construct trees of life for various groups of organisms. In this study, we addressed these issues in analyses of the genus Carpinus (hornbeams) of the Betulaceae. We assembled and annotated the chloroplast (cp) genomes (plastomes) of nine hornbeams representing main clades previously distinguished in this genus. All nine plastomes are highly conserved, with four regions, and about 158–160 kb long, including 121–123 genes. Phylogenetic analyses of whole plastome sequences, noncoding sequences, and the well‐aligned coding genes resulted in high resolution of the sampled species in contrast to the failure based on a few cpDNA markers. Phylogenetic relationships in a few clades based only on the coding genes are slightly inconsistent with those based on the noncoding and total plastome datasets. Moreover, these plastome trees are highly incongruent with those based on bi‐parentally inherited internal transcribed spacer (ITS) sequence variations. Such high inconsistencies suggest widespread occurrence of incomplete lineage sorting and hybrid introgression during diversification of these hornbeams.  相似文献   

20.
Phylogenetic analyses of partial phytochrome B (PHYB) nuclear DNA sequences provide unambiguous resolution of evolutionary relationships within Poaceae. Analysis of PHYB nucleotides from 51 taxa representing seven traditionally recognized subfamilies clearly distinguishes three early-diverging herbaceous "bambusoid" lineages. First and most basal are Anomochloa and Streptochaeta, second is Pharus, and third is Puelia. The remaining grasses occur in two principal, highly supported clades. The first comprises bambusoid, oryzoid, and pooid genera (the BOP clade); the second comprises panicoid, arundinoid, chloridoid, and centothecoid genera (the PACC clade). The PHYB phylogeny is the first nuclear gene tree to address comprehensively phylogenetic relationships among grasses. It corroborates several inferences made from chloroplast gene trees, including the PACC clade, and the basal position of the herbaceous bamboos Anomochloa, Streptochaeta, and Pharus. However, the clear resolution of the sister group relationship among bambusoids, oryzoids, and pooids in the PHYB tree is novel; the relationship is only weakly supported in ndhF trees and is nonexistent in rbcL and plastid restriction site trees. Nuclear PHYB data support Anomochlooideae, Pharoideae, Pooideae sensu lato, Oryzoideae, Panicoideae, and Chloridoideae, and concur in the polyphyly of both Arundinoideae and Bambusoideae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号