首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The influence of host diversity on multi-host pathogen transmission and persistence can be confounded by the large number of species and biological interactions that can characterize many transmission systems. For vector-borne pathogens, the composition of host communities has been hypothesized to affect transmission; however, the specific characteristics of host communities that affect transmission remain largely unknown. We tested the hypothesis that vector host use and force of infection (i.e., the summed number of infectious mosquitoes resulting from feeding upon each vertebrate host within a community of hosts), and not simply host diversity or richness, determine local infection rates of West Nile virus (WNV) in mosquito vectors. In suburban Chicago, Illinois, USA, we estimated community force of infection for West Nile virus using data on Culex pipiens mosquito host selection and WNV vertebrate reservoir competence for each host species in multiple residential and semi-natural study sites. We found host community force of infection interacted with avian diversity to influence WNV infection in Culex mosquitoes across the study area. Two avian species, the American robin (Turdus migratorius) and the house sparrow (Passer domesticus), produced 95.8% of the infectious Cx. pipiens mosquitoes and showed a significant positive association with WNV infection in Culex spp. mosquitoes. Therefore, indices of community structure, such as species diversity or richness, may not be reliable indicators of transmission risk at fine spatial scales in vector-borne disease systems. Rather, robust assessment of local transmission risk should incorporate heterogeneity in vector host feeding and variation in vertebrate reservoir competence at the spatial scale of vector-host interaction.  相似文献   

2.
In Europe, West Nile virus (WNV) outbreaks have been limited to southern and central European countries. However, competent mosquito vectors and susceptible bird hosts are present in northern Europe. Differences in temperature and vector competence of mosquito populations may explain the absence of WNV outbreaks in northern Europe. The aim of the present study was to directly compare vector competence of northern and southern European Culex pipiens (Cx. p.) pipiens mosquitoes for WNV across a gradient of temperatures. WNV infection and transmission rates were determined for two Cx. p. pipiens populations originating from The Netherlands and Italy, respectively. Mosquitoes were orally exposed by providing an infectious bloodmeal, or by injecting WNV (lineage 2) in the thorax, followed by 14‐day incubation at 18, 23, or 28 °C. No differences in infection or transmission rates were found between the Cx. p. pipiens populations with both infection methods, but WNV transmission rates were significantly higher at temperatures above 18 °C. The absence of WNV outbreaks in northern Europe cannot be explained by differences in vector competence between Cx. p. pipiens populations originating from northern and southern Europe. This study suggests that low temperature is a key limiting factor for WNV transmission.  相似文献   

3.
In the late summer of 1998, an outbreak of equine encephalomyelitis due to West Nile virus (WNV) occurred in the Tuscany region of central Italy. The disease was detected in 14 race horses from nine localities in four Provinces: Firenze, Lucca, Pisa and Pistoia. The outbreak area included Fucecchio wetlands (1800 ha), the largest inland marsh in Italy, and the adjacent hilly Cerbaie woodlands with farms breeding horses. To detect potential vectors of WNV, entomological surveys of Fucecchio and Cerbaie were undertaken during 1999-2002 by collecting mosquito larvae from breeding sites and adult mosquitoes by several methods of sampling. Among 6023 mosquitoes (Diptera: Culicidae) collected, 11 species were identified: Aedes albopictus (Skuse), Ae. vexans (Meigen), Anopheles atroparvus Van Thiel, An. maculipennis Meigen s.s., An. plumbeus Stephens, Culex impudicus Ficalbi, Cx. pipiens L., Culiseta longiareolata Macquart), Ochlerotatus caspius (Pallas), Oc. detritus (Haliday) and Oc. geniculatus (Olivier). In Fucecchio marshes, Cx. impudicus predominated with seasonal peak densities in spring and autumn: its greatest abundance during early spring coincides with arrival of migratory birds from Africa. In Cerbaie hills, Cx. pipiens predominated with peak population density in late summer. No viruses were isolated from 665 mosquitoes processed. These findings, plus other data on Italian mosquito bionomics, suggest a possible mode of WNV transmission involving the most abundant Culex in the Fucecchio-Cerbaie areas. Culex impudicus, being partly ornithophilic, might transmit WNV from migratory to non-migratory birds during springtime; Cx. pipiens, having a broader host range, would be more likely to transmit WNV from birds to horses and, perhaps, to humans by late summer.  相似文献   

4.
West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance.  相似文献   

5.
West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.  相似文献   

6.
West Nile fever (WNF) and Rift Valley fever (RVF) are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV) circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV) re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8) and 10(8.5) plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.  相似文献   

7.
The Culex pipiens complex includes two widespread mosquito vector species, Cx. pipiens and Cx. quinquefasciatus. The distribution of these species varies in latitude, with the former being present in temperate regions and the latter in tropical and subtropical regions. However, their distribution range overlaps in certain areas and interspecific hybridization has been documented. Genetic introgression between these species may have epidemiological repercussions for West Nile virus (WNV) transmission. Bayesian clustering analysis based on multilocus genotypes of 12 microsatellites was used to determine levels of hybridization between these two species in Macaronesian islands, the only contact zone described in West Africa. The distribution of the two species reflects both the islands' biogeography and historical aspects of human colonization. Madeira Island displayed a homogenous population of Cx. pipiens, whereas Cape Verde showed a more intriguing scenario with extensive hybridization. In the islands of Brava and Santiago, only Cx. quinquefasciatus was found, while in Fogo and Maio high hybrid rates (~40%) between the two species were detected. Within the admixed populations, second-generation hybrids (~50%) were identified suggesting a lack of isolation mechanisms. The observed levels of hybridization may locally potentiate the transmission to humans of zoonotic arboviruses such as WNV.  相似文献   

8.
Seasonal epizootics of vector-borne pathogens infecting multiple species are ecologically complex and difficult to forecast. Pathogen transmission potential within the host community is determined by the relative abilities of host species to maintain and transmit the pathogen and by ecological factors influencing contact rates between hosts and vectors. Increasing evidence of strong feeding preferences by a number of vectors suggests that the host community experienced by the pathogen may be very different from the local host community. We developed an empirically informed transmission model for West Nile virus (WNV) in four sites using one vector species (Culex pipiens) and preferred and non-preferred avian hosts. We measured strong feeding preferences for American robins (Turdus migratorius) by Cx. pipiens, quantified as the proportion of Cx. pipiens blood meals from robins in relation to their abundance (feeding index). The model accurately predicted WNV prevalence in Cx. pipiens at three of four sites. Sensitivity analysis revealed feeding preference was the most influential parameter on intensity and timing of peak WNV infection in Cx. pipiens and a threshold feeding index for transmission was identified. Our findings indicate host preference-induced contact heterogeneity is a key mediator of vector-borne pathogen epizootics in multi-species host communities, and should be incorporated into multi-host transmission models.  相似文献   

9.
In nature, arthropod-borne viruses (arboviruses) perpetuate through alternating replication in vertebrate and invertebrate hosts. The trade-off hypothesis proposes that these viruses maintain adequate replicative fitness in two disparate hosts in exchange for superior fitness in one host. Releasing the virus from the constraints of a two-host cycle should thus facilitate adaptation to a single host. This theory has been addressed in a variety of systems, but remains poorly understood. We sought to determine the fitness implications of alternating host replication for West Nile virus (WNV) using an in vivo model system. Previously, WNV was serially or alternately passed 20 times in vivo in chicks or mosquitoes and resulting viruses were characterized genetically. In this study, these test viruses were competed in vivo in fitness assays against an unpassed marked reference virus. Fitness was assayed in chicks and in two important WNV vectors, Culex pipiens and Culex quinquefasciatus. Chick-specialized virus displayed clear fitness gains in chicks and in Cx. pipiens but not in Cx. quinquefasciatus. Cx. pipiens-specialized virus experienced reduced fitness in chicks and little change in either mosquito species. These data suggest that when fitness is measured in birds the trade-off hypothesis is supported; but in mosquitoes it is not. Overall, these results suggest that WNV evolution is driven by alternate cycles of genetic expansion in mosquitoes, where purifying selection is weak and genetic diversity generated, and restriction in birds, where purifying selection is strong.  相似文献   

10.
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host–vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of ‘dilution effect’) best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.  相似文献   

11.
West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.  相似文献   

12.
West Nile virus (WNV) is transmitted to vertebrate hosts by mosquitoes as they take a blood meal. The amount of WNV inoculated by mosquitoes as they feed on a live host is not known. Previous estimates of the amount of WNV inoculated by mosquitoes (10(1.2)-10(4.3) PFU) were based on in vitro assays that do not allow mosquitoes to probe or feed naturally. Here, we developed an in vivo assay to determine the amount of WNV inoculated by mosquitoes as they probe and feed on peripheral tissues of a mouse or chick. Using our assay, we recovered approximately one-third of a known amount of virus inoculated into mouse tissues. Accounting for unrecovered virus, mean and median doses of WNV inoculated by four mosquito species were 10(4.3) PFU and 10(5.0) PFU for Culex tarsalis, 10(5.9) PFU and 10(6.1) PFU for Cx. pipiens, 10(4.7) PFU and 10(4.7) PFU for Aedes japonicus, and 10(3.6) PFU and 10(3.4) PFU for Ae. triseriatus. In a direct comparison, in vivo estimates of the viral dose inoculated by Cx. tarsalis were approximately 600 times greater than estimates obtained by an in vitro capillary tube transmission assay. Virus did not disperse rapidly, as >99% of the virus was recovered from the section fed or probed upon by the mosquito. Furthermore, 76% (22/29) of mosquitoes inoculated a small amount of virus ( approximately 10(2) PFU) directly into the blood while feeding. Direct introduction of virus into the blood may alter viral tropism, lead to earlier development of viremia, and cause low rates of infection in co-feeding mosquitoes. Our data demonstrate that mosquitoes inoculate high doses of WNV extravascularly and low doses intravascularly while probing and feeding on a live host. Accurate estimates of the viral dose inoculated by mosquitoes are critical in order to administer appropriate inoculation doses to animals in vaccine, host competence, and pathogenesis studies.  相似文献   

13.
West Nile virus (WNV) transmitted by mosquitoes (Diptera: Culicidae) infects various vertebrates, being pathogenic for birds, horses and humans. After its discovery in tropical Africa, sporadic outbreaks of WNV occurred during recent decades in Eurasia, but not the British Isles. WNV reached New York in 1999 and spread to California by 2003, causing widespread outbreaks of West Nile encephalitis across North America, transmitted by many species of mosquitoes, mainly Culex spp. The periodic reappearance of WNV in parts of continental Europe (from southern France to Romania) gives rise to concern over the possibility of WNV invading the British Isles. The British Isles have about 30 endemic mosquito species, several with seasonal abundance and other eco-behavioural characteristics predisposing them to serve as potential WNV bridge vectors from birds to humans. These include: the predominantly ornithophilic Culex pipiens L. and its anthropophilic biotype molestus Forskal; tree-hole adapted Anopheles plumbeus Stephens; saltmarsh-adapted Ochlerotatus caspius Pallas, Oc. detritus Haliday and Oc. dorsalis (Meigen); Coquillettidia richiardii Ficalbi, Culiseta annulata Schrank and Cs. morsitans (Theobald) from vegetated freshwater pools; Aedes cinereus Meigen, Oc. cantans Meigen and Oc. punctor Kirby from seasonal woodland pools. Those underlined have been found carrying WNV in other countries (12 species), including the rarer British species Aedes vexans (Meigen), Culex europaeus Ramos et al., Cx. modestus Ficalbi and Oc. sticticus (Meigen) as well as the Anopheles maculipennis Meigen complex (mainly An. atroparvus van Thiel and An. messeae Falleroni in Britain). Those implicated as key vectors of WNV in Europe are printed bold (four species). So far there is no proof of any arbovirus transmission by mosquitoes in the British Isles, although antibodies to Sindbis, Tahyna, Usutu and West Nile viruses have been detected in British birds. Neighbouring European countries have enzootic WNV and human infections transmitted by mosquito species that are present in the British Isles. However, except for localized urban infestations of Cx. pipiens biotype molestus that can be readily eliminated, there appear to be few situations in the British Isles where humans and livestock are exposed to sustained risks of exposure to potential WNV vectors. Monitoring of mosquitoes and arbovirus surveillance are required to guard the British Isles against WNV outbreaks and introduction of more anthropophilic mosquitoes such as Stegomyia albopicta (Skuse) and Ochlerotatus japonicus (Theobald) that have recently invaded Europe, since they transmit arboviruses elsewhere.  相似文献   

14.

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.  相似文献   

15.
Two western equine encephalomyelitis virus (WEEV) strains have been isolated in China. Our previous studies have verified that the mosquito Culex pipiens pallens Coquillett (Diptera: Culicidae) infected with WEEV was capable of transmitting this arbovirus, but it was not clear how the sequential multiplication and spread of virus occurred within the mosquito. In this study, we observed the distribution of WEEV antigen in orally‐infected Cx. p. pallens by immunohistochemistry in order to better understand the initial infection, dissemination, and transmission of WEEV in the potential vector. Orally‐infected WEEV dissemination varied within the different tissues of Cx. p. pallens, with virus antigen consistently observed in the salivary glands, foregut, midgut epithelial cells, Malpighian tubules, hindgut, and ovarian follicles of some individuals after various days of extrinsic incubation. We suggest that Cx. p. pallens, the potential vector of WEEV, has the ability to harbor the virus through the alimentary system, and the midgut epithelial cell may be the initial site of WEEV replication after ingestion of a viremic blood meal.  相似文献   

16.
Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes.  相似文献   

17.
West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting.  相似文献   

18.
The distribution of the West Nile virus (WNV) in the organs and tissues of the mosquito Culex pipiens pallens, a potential vector of WNV in China, was investigated up to 14 days after oral infection. The WNV antigen was detected in paraffin‐embedded mosquitoes using immunocytochemistry and viral titers of post‐infected mosquitoes determined by plaque assay. Viral titers sharply decreased 24 h post‐infection, were undetectable for the first few days, then rose over the course of infection. The first midgut infection appeared after one day, and the overall infection rate (based on midgut infection) was 43.9%. Other tissues, including hindgut, foregut, ovarian follicles, Malpighian tubules, and ommatidia, showed weak WNV antigens as early as three days post‐infection. Staining in the salivary glands first appeared after seven days, and the salivary gland infection rate on the 14th day was 37.5%. Specimens with no detectable WNV antigens in any tissues, and with positive results confined to the midgut, anterior midgut, and hindgut, were observed on the 14th day. The route of viral dissemination from the midgut, and the relative importance of amplifying tissues in mosquitoes' susceptibility to infection, were evaluated. The results indicate that Cx. p. pallens has the ability to harbor WNV throughout its alimentary system and that midgut epithelial cells may be the initial site of the replication of this virus in this species.  相似文献   

19.
Culex (Culex) pipiens (Diptera: Culicidae) has two recognized biotypes, pipiens and molestus, which differ in physiology and behaviour; this difference may influence vectorial capacity for West Nile virus (WNV). Our goal was first to determine the presence of Cx. pipiens populations in 31 locations in Portugal and to subsequently analyse their host‐feeding preferences and habitat determinants. Molecular identification of Cx. pipiens forms and their hybrids was performed in 97 females; bloodmeal sources were identified in 59 engorged specimens. Overall, 61.9% of specimens were identified as Cx. pipiens f. pipiens, 20.6% as Cx. pipiens f. molestus, and 17.5% as hybrid forms. Culex pipiens f. pipiens fed preferentially on birds, and Cx. pipiens f. molestus on humans. Hybrid forms fed mostly on birds, but human bloodmeals were common. With reference to habitat, Cx. pipiens f. pipiens and hybrid forms were positively correlated with peri‐urban habitats. Our results confirm the sympatric presence of different Cx. pipiens biotypes in 14 of the 31 locations studied. Peri‐urban areas were a common habitat of all biotypes and may represent zones of hybridization. The feeding preferences and sympatric distribution of the Cx. pipiens biotypes observed in Portugal favour the epizootic circulation of WNV and the occurrence of disease outbreaks of WNV.  相似文献   

20.
The emerging disease West Nile fever is caused by West Nile virus (WNV), one of the most widespread arboviruses. This study represents the first test of the vectorial competence of European Culex pipiens Linnaeus 1758 and Stegomyia albopicta (= Aedes albopictus) (both: Diptera: Culicidae) populations for lineage 1 and 2 WNV isolated in Europe. Culex pipiens and S. albopicta populations were susceptible to WNV infection, had disseminated infection, and were capable of transmitting both WNV lineages. This is the first WNV competence assay to maintain mosquito specimens under environmental conditions mimicking the field (day/night) conditions associated with the period of maximum expected WNV activity. The importance of environmental conditions is discussed and the issue of how previous experiments conducted in fixed high temperatures may have overestimated WNV vector competence results with respect to natural environmental conditions is analysed. The information presented should be useful to policymakers and public health authorities for establishing effective WNV surveillance and vector control programmes. This would improve preparedness to prevent future outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号