首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 586 毫秒
1.
2.
3.
The high mortality rate of lung cancer patients is mainly due to the late stage at which lung cancer is diagnosed. For effective cancer prevention programs and early diagnosis, better blood-based markers are needed. Hence, blood-based microarray profiling of microRNA (miR) expression was performed in preoperative serum of 21 non-small cell lung cancer (NSCLC) patients and 11 healthy individuals by microfluid biochips containing 1158 different miRs. Two out of the 30 most dysregulated miRs were further validated in serum of 97 NSCLC patients, 20 patients with benign lung diseases and 30 healthy individuals by TaqMan MicroRNA Assays. Microarray profiling showed that miR-361-3p and miR-625* were significantly down-regulated in serum of lung cancer patients. Their further evaluation by quantitative RT-PCR showed that the levels of miR-361-3p and miR-625* were lower in NSCLC than in benign disease (p = 0.0001) and healthy individuals (p = 0.0001, p = 0.0005, respectively). Moreover, the levels of miR-625* were significantly lower in patients with large cell lung cancer (LCLC, p = 0.014) and smoking patients (p = 0.030) than in patients with adenocarcinoma and non-smoking patients, respectively. A rise in the levels of both miRs was observed in the postoperative samples compared with the preoperative levels (p = 0.0001). Functional analyses showed that Smad2 and TGF?1 are not dysregulated by miR-361-3p and miR-625* in the lung cell line A549, respectively. Our present pilot study suggests that miR-361-3p and miR-625* might have a protective influence on the development of NSCLC, and the quantitative assessment of these miRs in blood serum might have diagnostic potential to detect NSCLC, in particular in smokers.  相似文献   

4.
Systemic treatment of patients with early-stage cancers attempts to eradicate occult metastatic disease to prevent recurrence and increased morbidity. However, prediction of recurrence from an analysis of the primary tumor is limited because disseminated cancer cells only represent a small subset of the primary lesion. Here we analyze the expression of circulating microRNAs (miRs) in serum obtained pre-surgically from patients with early stage colorectal cancers. Groups of five patients with and without disease recurrence were used to identify an informative panel of circulating miRs using quantitative PCR of genome-wide miR expression as well as a set of published candidate miRs. A panel of six informative miRs (miR-15a, mir-103, miR-148a, miR-320a, miR-451, miR-596) was derived from this analysis and evaluated in a separate validation set of thirty patients. Hierarchical clustering of the expression levels of these six circulating miRs and Kaplan-Meier analysis showed that the risk of disease recurrence of early stage colon cancer can be predicted by this panel of miRs that are measurable in the circulation at the time of diagnosis (P = 0.0026; Hazard Ratio 5.4; 95% CI of 1.9 to 15).  相似文献   

5.
microRNAs (miRs) modulate the expression levels of mRNAs and proteins and can thus contribute to cancer initiation and progression. In addition to their intracelluar function, miRs are released from cells and shed into the circulation. We postulated that circulating miRs could provide insight into pathways altered during cancer progression and may indicate responses to treatment. Here we focus on pancreatic cancer malignant progression. We report that changes in miR expression patterns during progression of normal tissues to invasive pancreatic adenocarcinoma in the p48-Cre/LSL-Kras(G12D) mouse model mirrors the miR changes observed in human pancreatic cancer tissues. miR-148a/b and miR-375 expression were found decreased whereas miR-10, miR-21, miR-100 and miR-155 were increased when comparing normal tissues, premalignant lesions and invasive carcinoma in the mouse model. Predicted target mRNAs FGFR1 (miR-10) and MLH1 (miR-155) were found downregulated. Quantitation of nine microRNAs in plasma samples from patients distinguished pancreatic cancers from other cancers as well as non-cancerous pancreatic disease. Finally, gemcitabine treatment of control animals and p48-Cre/LSL-Kras(G12D) animals with pancreatic cancer caused distinct and up to 60-fold changes in circulating miRs that indicate differential drug effects on normal and cancer tissues. These findings support the significance of detecting miRs in the circulation and suggests that circulating miRs could serve as indicators of drug response.  相似文献   

6.
BackgroundMicroRNAs (miRs) regulate gene expression through translation inhibition of target mRNAs. One of the most promising approaches for cancer therapy is through mimicking or antagonizing the action of miRs. In this report, we analyzed the miRnome profile of several human breast cancer cell lines to determine the influence of estrogen receptor (ER) silencing previously shown to result in epithelial to mesenchymal transition (EMT) and enhanced tumor invasion.MethodsMicroRNA extracted from MDA-MB-231 (de novo ER-) and ER-silenced (acquired ER-) pII and IM-26 or ER-expressing (YS1.2) siRNA transfected derivatives of MCF7 cells was deep sequenced on Illumina NextSeq500. Respective miRnomes were compared with edgeR package in R and Venny2.1 and target prediction performed with miRTarBase. Mimics and inhibitors of selected differentially expressed miRs associated with EMT mediators (miR-200c-3p targeting ZEB1, miR-449a targeting δ-catenin and miR-29a-3p) were transfected into pII cells and mRNA targets, as well as E-cadherin and keratin 19 (epithelial and mesenchymal markers respectively) were measured using taqman PCR.ResultsEach cell line expressed about 20% of the total known human miRnome; There was a high degree of similarity between the 3 tested ER-lines. Out of these expressed miRs, 50–60% were significantly differentially expressed between ER- and ER + lines. Transfection of miR-200c-3p mimic into pII cells down regulated ZEB1 and vimentin, and increased E-cadherin and keratin 19 with accompanying morphological changes, and reduced cell motility, reflecting a reversal back into an epithelial phenotype. On the other hand, transfecting pII with miR-449a inhibitor reduced cell invasion but did not induce EMT. Transfecting pII cell line with the mimic or inhibitor of miR-29a-3p showed no change in EMT markers or cell invasion suggesting that the EMT induced by loss of ER function can be reversed by blocking some but not just any random EMT-associated genes.ConclusionsThese data suggest that differences in miR expression can be exploited not only as mediators (using mimics) and targets (using miR antagonists) for general cancer therapies aimed at regulating either individual or multiple mRNAs, but also to re-sensitize endocrine resistant breast cancers by turning them back into a type that will be susceptible to endocrine agents.  相似文献   

7.
miR-15a and miR-16-1 down-regulation in pituitary adenomas   总被引:12,自引:0,他引:12  
Micro RNAs (miRs) are small noncoding RNAs, functioning as antisense regulators of other RNAs. miR-15a and miR-16-1 genes are located at chromosome 13q14, a region which is frequently deleted in pituitary tumors. An inverse correlation has been shown in B cell chronic lymphocytic leukemia (B-CLL) between miR-15a and miR-16-1 expression and the expression levels of arginyl-tRNA synthetase (RARS), an enzyme which associates with the cofactor p43 in the aminoacyl-tRNA synthetase complex. When secreted, p43 regulates local inflammatory response and macrophage chemotaxis, and seems to have anti-neoplastic properties in mice. We explored miR-15a and miR-16-1 expression in 10 GH-secreting and in 10 PRL-secreting pituitary macroadenomas by Northern blot, and investigated the possible correlation with in vivo and in vitro characteristics. We found that miR-15a and miR-16-1 are expressed at lower levels in pituitary adenomas as compared to normal pituitary tissue. Moreover, their expression inversely correlates with tumor diameter and with RARS expression (P < 0.05), but directly correlates with p43 secretion (P < 0.02). Therefore, miR15 and miR16 down-regulation in pituitary adenomas correlates with a greater tumor diameter and a lower p43 secretion, suggesting that these genes may, at least in part, influence tumor growth.  相似文献   

8.
MicroRNAs (miRs) are small, endogenous, non-coding RNAs that regulate the stability and/or translation of complementary mRNA targets. MiRs have emerged not only as critical modulators of normal physiologic processes, but their deregulation may significantly impact prostate and other cancers. The expression of miR-23b and miR-27b, which are encoded by the same miR cluster (miR-23b/-27b), are downregulated in metastatic, castration-resistant tumors compared to primary prostate cancer and benign tissue; however, their possible role in prostate cancer progression is unknown. We found that ectopic expression of miR-23b/-27b in two independent castration-resistant prostate cancer cell lines resulted in suppression of invasion and migration, as well as reduced survival in soft agar (a measure of anoikis). However, there was no effect of miR-23b/-27b on cell proliferation suggesting that these miRs function as metastasis (but not growth) suppressors in prostate cancer. Conversely, inhibition of miR-23b/-27b in the less aggressive androgen-dependent LNCaP prostate cancer cell line resulted in enhanced invasion and migration also without affecting proliferation. Mechanistically, we found that introduction of miR-23b/-27b in metastatic, castration-resistant prostate cancer cell lines resulted in a significant attenuation of Rac1 activity without affecting total Rac1 levels and caused increased levels of the tumor suppressor E-cadherin. Inhibition of these miRs had the opposite effect in androgen-dependent LNCaP cells. These results suggest that miR-23b/-27b are metastasis suppressors that might serve as novel biomarkers and therapeutic agents for castration-resistant disease.  相似文献   

9.

Aim

Pulsatile flow left ventricular assist devices (pf-LVADs) are being replaced by continuous flow LVADs (cf-LVADs) in patients with end-stage heart failure (HF). MicroRNAs (miRs) play an important role in the onset and progression of HF. Our aim was to analyze cardiac miR expression patterns associated with each type of device, to analyze differences in the regulation of the induced cardiac changes.

Methods and Results

Twenty-six miRs were selected (based on micro-array data and literature studies) and validated in myocardial tissue before and after pf- (n = 17) and cf-LVAD (n = 17) support. Of these, 5 miRs displayed a similar expression pattern among the devices (miR-129*, miR-146a, miR-155, miR-221, miR-222), whereas others only changed significantly during pf-LVAD (miR-let-7i, miR-21, miR-378, miR-378*) or cf-LVAD support (miR-137). In addition, 4 miRs were investigated in plasma of cf-LVAD supported patients (n = 18) and healthy controls (n = 10). Circulating miR-21 decreased at 1, 3, and 6 months after LVAD implantation. MiR-146a, miR-221 and miR-222 showed a fluctuating time pattern post-LVAD.

Conclusion

Our data show a different miR expression pattern after LVAD support, suggesting that differentially expressed miRs are partially responsible for the cardiac morphological and functional changes observed after support. However, the miR expression patterns do not seem to significantly differ between pf- and cf-LVAD implying that most cardiac changes or clinical outcomes specific to each device do not relate to differences in miR expression levels.  相似文献   

10.
11.
Breast cancer is a leading cause of morbidity and mortality among women. Metastasis is initiated after epithelial-mesenchymal-transition (EMT). We have found a connection between EMT markers and the expression of four microRNAs (miRs) mediated by the signaling enzyme phospholipase D (PLD). Low aggressive MCF-7 breast cancer cells have low endogenous PLD enzymatic activity and cell invasion, concomitant with high expression of miR-203, -887, and -3619 (that decrease PLD2 translation and a luciferase reporter) and miR-182 (targeting PLD1) that are, therefore, “tumor-suppressor-like” miRs. The combination miR-887+miR-3619 abolished >90% of PLD enzymatic activity. Conversely, post-EMT MDA-MB-231 cells have low miR expression, high levels of PLD1/2, and high aggressiveness. The latter was reversed by ectopically transfecting the miRs, which was negated by silencing miRs with specific siRNAs. We determined that the molecular mechanism is that E-cadherin triggers expression of the miRs in pre-EMT cells, whereas vimentin dampens expression of the miRs in post-EMT invasive cells. This novel work identifies for the first time a set of miRs that are activated by a major pre-EMT marker and deactivated by a post-EMT marker, boosting the transition from low invasion to high invasion, as mediated by the key phospholipid metabolism enzyme PLD.  相似文献   

12.
RT-qPCR is the accepted technique for the quantification of microRNA (miR) expression: however, stem-loop RT-PCR, the most frequently used method for quantification of miRs, is time- and reagent-consuming as well as inconvenient for scanning. We established a new method called ‘universal stem-loop primer’ (USLP) with 8 random nucleotides instead of a specific sequence at the 3′ end of the traditional stem-loop primer (TSLP), for screening miR profile and to semi-quantify expression of miRs. Peripheral blood samples were cultured with phytohaemagglutinin (PHA), and then 87 candidate miRs were scanned in cultured T cells. By USLP, our study revealed that the expression of miR-150-5p (miR-150) decreased nearly 10-fold, and miR-155-5p (miR-155) increased more than 7-fold after treated with PHA. The results of the dissociation curve and gel electrophoresis showed that the PCR production of the USLP and TSLP were specificity. The USLP method has high precision because of its low ICV (ICV<2.5%). The sensitivity of the USLP is up to 103 copies/µl miR. As compared with the TSLP, USLP saved 75% the cost of primers and 60% of the test time. The USLP method is a simple, rapid, precise, sensitive, and cost-effective approach that is suitable for screening miR profiles.  相似文献   

13.
14.
Recent in situ hybridization experiments have shown a high content of IGF-II mRNA in breast cancer stroma. The aim of this study was to examine the relationship between IGF-II protein expression and several prognostic parameters in 75 infiltrating ductal carcinomas (IDC) of the breast. Tissue sections were evaluated for proliferative activity, IGF-II protein, ER, PgR, p53, and p21 expression using immunohistochemical procedures. The degree of stromal proliferation was assessed. Menopausal status, axillary lymph node involvement and nuclear grade were known. Thirty-five patients (44.3%) were premenopausal and 47 (62.6%) had lymph node metastases. Marked stromal proliferation was found in 34 (45.3%) specimens and high nuclear grade in 20 (26.5%). Eighteen tumors (24%) showed no IGF-II immunostaining. In the positive cases, IGF-II was detected both in the tumor stroma and in the cytoplasm of epithelial cancer cells: a high IGF-II content was found in 12 specimens (16.0%), a low content in 14 (18.7%) and a moderate content in 31 (41.3%). Twenty-four tumors (32.0%) showed high proliferative activity. Both ER and PgR were expressed in the nucleus of cancer cells: 49 tumors (65.3%) were ER positive (ER+) and 34 (45.3%) PgR positive (PgR+). p21 protein was detected in 37 tumors (49.6%) and p53 in 12 (16%). IGF-II protein was not correlated with menopausal status, lymph node metastases, nuclear grade, proliferative activity, ER or p53. In contrast, IGF-II correlated strongly with stromal proliferation (p=0.008), PgR (p=0.03) and p21 (p=0.01). This study demonstrates that in IDC of the breast IGF-II protein is expressed in the epithelium and stroma of the majority of tumors and is correlated with stromal amount, PgR and p21 expression. These preliminary results indicate that IGF-II expression in breast cancer is connected with two important regulators of breast cancer growth and differentiation.  相似文献   

15.
Both miRNAs (miRs) and connexin 43 (Cx43) were important regulators of the metastasis of breast cancer, whereas the miRs regulating Cx43 expression in breast cancer cells were still obscure. In the present study, we scanned and found miR-1, miR-206, miR-200a, miR-381, miR-23a/b and miR-186 were functional suppressors of human Cx43 mRNA and protein expression. Specially, we demonstrated that only miR-200a could directly target the 3′-untranslated region (3′-UTR) of human Cx43 gene. Functionally, overexpression of Cx43 in MCF cells potentiated the migration activity, whereas additional miR-200a treatment notably prevented this effect. Finally, we demonstrated that decreased levels of miR-200a and elevated expression of Cx43 in the metastatic breast cancer tissues compared with the primary ones. Thus, we are the first to identify miR-200a as a novel and direct suppressor of human Cx43, indicating that miR200a/Cx43 axis might be a useful diagnostic and therapeutic target of metastatic breast cancer.  相似文献   

16.
The functional role of IGFBP5 in breast cancer is complicated. Experimental and bioinformatics studies have shown that IGFBP5 is targeted by miR-140-5p and miR-193b, although this has not yet been proven in clinical samples. The aim of this study was to evaluate the expression of miR-140-5p and miR-193b in breast cancer and adjacent normal tissue and assess its correlation with IGFBP5 and the clinicopathological characteristics of the tumors. IGFBP5 protein expression was analyzed immunohistochemically and IGFBP5, miR-140 and miR-193b mRNA expression levels were analyzed with real-time RT-PCR. Tumor tissue had higher miR-140-5p expression than adjacent normal tissue (p = 0.015). Samples with no immunohistochemical staining for IGFBP5 showed increased miR-140-5p expression (p = 0.009). miR-140-5p expression was elevated in invasive ductal carcinomas (p = 0.002), whereas basal-like tumors had decreased expression of miR-140-5p compared to other tumors (p = 0.008). Lymph node-positive samples showed an approximately 13-fold increase in miR-140-5p expression compared to lymph node-negative tissue (p = 0.049). These findings suggest that miR-140-5p, but not miR-193b, could be an important determinant of IGFBP5 expression and clinical phenotype in breast cancer patients. Further studies are needed to clarify the expressional regulation of IGFBP5 by miR-140-5p.  相似文献   

17.
Downregulation of miR-122 in the rodent and human hepatocellular carcinomas   总被引:19,自引:0,他引:19  
MicroRNAs (miRs) are conserved small non-coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats-fed folic acid, methionine, and choline-deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age-matched rats on the normal diet. While let-7a, miR-21, miR-23, miR-130, miR-190, and miR-17-92 family of genes was upregulated, miR-122, an abundant liver-specific miR, was downregulated in the tumors. The decrease in hepatic miR-122 was a tumor-specific event because it did not occur in the rats switched to the folate and methyl-adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR-122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR-122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair-matched control tissues. These findings suggest that the downregulation of miR-122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers.  相似文献   

18.
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and it has a prevalence rate of 15%–20% among all breast cancer cases in younger women. Still, the underlying molecular mechanisms of its pathogenesis are not entirely understood. In the previous study, we identified that microRNA (miR)-1250-5p is significantly down-expressed in TNBC cells. Thus, in the present study, we explore the functional anticancer role of miR‑1250‑5p in the transient mimic transfected TNBC cells. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to examine the effect of miR-1250-5p on cell viability of TNBC (MDA-MB-231 and MDA-MB-453) cells. The confocal microscopy, quantitative real-time polymerase chain reaction, and western blot analysis techniques were used to assess the effect of miR-1250-5p on cancer hallmarks in test cells. Induced miR‑1250-5p expression in MDA-MB-231 and MDA-MB-453 cells decreased cell viability in a time-dependent manner. Increased miR‑1250-5p expression levels significantly decreased cell cycle G1/S phase transition markers (Cyclin D1 and CDK4) at messenger RNA (mRNA) and protein levels in TNBC cells compared to scrambled sequence transfected cells. Transient transfection of TNBC cells with miR-1250-5p mimic increased apoptosis in TNBC cells by increasing the level of active caspase (Caspase 8 and Caspase 3) of the intrinsic pathway. Apoptosis-related morphological changes were also observed in the test cells. Further, the induced expression of miR-1250-5p significantly decreased epithelial-mesenchymal transition (EMT) by altering the mRNA and protein levels of E-cadherin and Vimentin. Moreover, results of confocal microscopy revealed increased reactive oxygen species generation, and decreased mitochondria membrane potential in miR-1250-5p mimic transient transfected TNBC cells. In conclusion, miR‑1250-5p acts as tumor suppressor in TNBC cells and its induction by therapeutics might be a novel strategy for the disease treatment.  相似文献   

19.
20.
Multidrug resistance (MDR) frequently develops in cancer patients exposed to chemotherapeutic agents and is usually brought about by over-expression of P-glycoprotein (P-gp) which acts as a drug efflux pump to reduce the intracellular concentration of the drug(s). Thus, inhibiting P-gp expression might assist in overcoming MDR in cancer chemotherapy. MiRNAome profiling using next-generation sequencing identified differentially expressed microRNAs (miRs) between parental K562 cells and MDR K562 cells (K562/ADM) induced by adriamycin treatment. Two miRs, miR-381 and miR-495, that were strongly down-regulated in K562/ADM cells, are validated to target the 3’-UTR of the MDR1 gene. These miRs are located within a miR cluster located at chromosome region 14q32.31, and all miRs in this cluster appear to be down-regulated in K562/ADM cells. Functional analysis indicated that restoring expression of miR-381 or miR-495 in K562/ADM cells was correlated with reduced expression of the MDR1 gene and its protein product, P-gp, and increased drug uptake by the cells. Thus, we have demonstrated that changing the levels of certain miR species modulates the MDR phenotype in leukemia cells, and propose further exploration of the use of miR-based therapies to overcome MDR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号