首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of nocturnal, Hoplias malabaricus, and diurnal, Crenicichla alta, predatory fishes downstream of barrier waterfalls increases predation threat for a killifish, Rivulus hartii, in Trinidadian streams. We hypothesized that the diel patterning of predation risk would affect prey movement rates, and tested this hypothesis by comparing movement in river sites/zones containing both the nocturnal and diurnal predator with movement in river sites/zones containing only the nocturnal taxon. We evaluated this prediction in the framework of an intermediate threat hypothesis (ITH) that holds that movement will be highest at some intermediate level of threat. We marked prey fish in study sites in two watersheds of a river, each with waterfalls that divided the river into three zones: a predator absent zone (P0), a zone with one nocturnal predator (P1), and a zone with one nocturnal and one diurnal predator (P2), and tested the ITH prediction that movement will be ordered as P0<P1>P2. The single predator promoted longitudinal movement by Rivulus (P0<P1), while zones with the two predators retarded movement for small Rivulus (P1>P2) as predicted by the ITH. However, movement by larger, less vulnerable Rivulus remained elevated (P1=P2 or P2>P1). A displacement experiment in each zone found that threat tended to reduce the probability of a displaced fish reaching home, but the two predator zones did not differ from one another in their effect on this probability. Hence, the prediction that predator activity over the full 24 h diel cycle would retard movement, P2<P1, was not supported with respect to homing. Because habitat and predator communities change predictably from headwater streams to larger rivers in many lotic ecosystems, we present a conceptual model for predicting fish movement behavior along this continuum. The model posits an important role for predation threat, and the size and spacing of refuge patches, suggesting that human alterations of these factors will affect the natural movement of fish in streams.  相似文献   

2.
Animals exhibit diel periodicity in their activity in part to meet energy requirements whilst evading predation. A competing hypothesis suggests that partitioning of diel activities is less important because animals capitalise on opportunity. To test these hypotheses we examined the diel activity patterns for two cyprinid minnows, chubbyhead barb Barbus anoplus and the Eastern Cape redfin minnow Pseudobarbus afer that both occur within headwater streams in the Eastern Cape, South Africa. Chubbyhead barbs exhibited consistent nocturnal activity based on both field and laboratory observations. Due to the absence of fish predators within its habitat, its nocturnal behaviour suggests a response to the cost associated with diurnal activity, such as predation risk by diving and wading birds. In contrast, redfin minnows showed high diurnal activity and a shoaling behaviour in the wild, whereas, in the laboratory, they showed high refuge use during the diel cycle. Despite their preference for refuge in the laboratory, they were diurnally active, a behaviour that was consistent with observations in the wild. The diurnal activity of this species suggests a response to the cost associated with nocturnal activity. Such a cost could be inferred from the presence of the longfin eel, a native predator that was active at night, whereas the daytime shoaling behaviour suggests an anti-predator mechanism to diurnal visual predators. The implications of these findings relate to the impacts associated with the potential invasions by non-native piscivores that occur in the mainstem sections. Diurnal activity patterns for redfin minnows, that are IUCN-listed as endangered, may, in part, explain their susceptibility to high predation by visual non-native piscivores, such as bass and trout. In contrast, the nocturnal habits of chubbyhead barbs suggest a probable pre-adaptation to visual predation. The likelihood of invasion by nocturnally-active sharptooth catfish Clarias gariepinus, however, may compromise this prior advantage.  相似文献   

3.
Predation by visual predators is often affected by light conditions and may therefore exhibit strong diel variation. The dominant predators on grass shrimp, Palaemonetes pugio, are finfish predators that are thought to locate their prey by visual cues. We examined the response of grass shrimp to diel variation in predation risk in the nearshore shallow waters of the Chesapeake Bay. We used diel shoreline seines to assess the relative abundance of predators. We assessed the relative risk of predation with shrimp tethered at refuge (30 cm) and nonrefuge (60 cm) depths. To measure grass shrimp response to predation risk, we used dipnets to monitor habitat use. Four predominantly visual predators dominated the shoreline seine catches, Fundulus heteroclitus, Micropogonias undulatus, Morone americana and Morone saxatilis. Total predator abundance had a diel component, with dramatic nighttime decreases in total abundance, whereas guild composition and relative abundance remained unchanged. Relative predation risk for tethered shrimp exhibited significant time by habitat interaction. During the day, depth negatively affected survivorship of tethered shrimp while at night overall survivorship increased and there was no effect of depth. Shrimp habitats use reflected diel predation risks. Abundances in the near shore were highest during the day with decreased abundances at night. Together, the seine and tethering data highlight the importance for a refuge (e.g., shallow water) from predation during the daytime and a relaxation of predation pressure at night.  相似文献   

4.
Although prey must move to forage, escape predation or gain information about predation risk, movement itself enhances the risk of predation by increasing visibility of prey and encounter rates with predators. Animals subjected to stressors often show altered behaviour; a widely cited effect of contaminant exposure is an increase in vulnerability to predation, which may be mediated by an increase in risky behaviour. Round goby are invasive fish that typically rely on crypsis and sheltering (low‐activity behaviours) to avoid predators. We collected round goby from contaminated sites and tested whether they showed signs of altered risk‐taking compared with fish from a less contaminated reference site. We subjected the fish to a simulated predation event (a motor‐operated model bass) under both diurnal and nocturnal conditions. Fish from contaminated sites showed lower overall activity levels, but also failed to reduce activity following an attack, unlike fish from the reference site. The intensity of effects varied with diel period. Males, but not females, from contaminated sites showed reduced likelihood of darting during an attack, while females, but not males, from contaminated sites were less likely to approach the predator. Sex differences in round goby risk‐taking may reflect sex‐specific selection pressures on activities promoting predation risk. With the exception of post‐attack activity, round goby from contaminated sites generally showed signs of reduced risk‐taking. If contaminant exposure increases goby vulnerability to predators, it may be occurring through behavioural mechanisms other than impacts on risky prey responses.  相似文献   

5.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

6.
Predicting the consequences of predator biodiversity loss on prey requires an understanding of multiple predator interactions. Predators are often assumed to have independent and additive effects on shared prey survival; however, multiple predator effects can be non-additive if predators foraging together reduce prey survival (risk enhancement) or increase prey survival through interference (risk reduction). In marine communities, juvenile reef fish experience very high mortality from two predator guilds with very different hunting modes and foraging domains—benthic and pelagic predator guilds. The few previous predator manipulation studies have found or assumed that mortality is independent and additive. We tested whether interacting predator guilds result in non-additive prey mortality and whether the detection of such effects change over time as prey are depleted. To do so, we examined the roles of benthic and pelagic predators on the survival of a juvenile shoaling zooplanktivorous temperate reef fish, Trachinops caudimaculatus, on artificial patch reefs over 2 months in Port Phillip Bay, Australia. We observed risk enhancement in the first 7 days, as shoaling behaviour placed prey between predator foraging domains with no effective refuge. At day 14 we observed additive mortality, and risk enhancement was no longer detectable. By days 28 and 62, pelagic predators were no longer significant sources of mortality and additivity was trivial. We hypothesize that declines in prey density led to reduced shoaling behaviour that brought prey more often into the domain of benthic predators, resulting in limited mortality from pelagic predators. Furthermore, pelagic predators may have spent less time patrolling reefs in response to declines in prey numbers. Our observation of the changing interaction between predators and prey has important implications for assessing the role of predation in regulating populations in complex communities.  相似文献   

7.
1. The spatial heterogeneity of ecosystems as well as temporal activity patterns of organisms can have far‐reaching effects on predator–prey relationships. We hypothesised that spatiotemporal constraints in mesohabitat use by benthic fish predators would reduce habitat overlap with benthic invertebrates and lead to mesohabitat‐specific predation risks. 2. We analysed the spatiotemporal activity patterns of two small‐bodied benthivorous fishes, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), and of benthic invertebrates in a small temperate stream during three 24‐h field experiments. By applying a novel method of field video observation, we monitored the spatiotemporal foraging behaviour of the fish in their natural environment. A parallel analysis of invertebrate mesohabitat use by means of small area Hess sampling allowed a direct estimation of habitat overlap at a pool–riffle scale. 3. Gudgeon showed a dominant spatial activity pattern preferring pools at all times of day, whereas stone loach used both mesohabitats but with a distinct temporal (nocturnal) activity pattern. The patterns of residence were not identical with those of active foraging. Invertebrate community composition differed significantly between mesohabitats but not between times of day. More than half of the total dissimilarity between pools and riffles was accounted for by six invertebrate taxa. Five of these were subject to higher fish predation in pools than in riffles. The total prey consumption of the two fish species together in pools was about three times as high as in riffles. Trophic niche breadth of stone loach and thus its predation range was broader than that of gudgeon. 4. These results indicate that the potential predation risk for stream invertebrates depends on the combination of spatial and temporal patterns of both predator and prey. Given the distinct differences in predation risk found between pools and riffles, we conclude that spatial heterogeneity at the mesohabitat scale can influence mechanisms and consequences of selective predation. We also suggest that the analysis of spatiotemporal predator–prey relationships should not be based on the premise that the main residence habitat and active foraging habitat of a predator are identical.  相似文献   

8.
Top predators cause avoidance behaviours in competitors and prey, which can lead to niche partitioning and facilitate coexistence. We investigate changes in partitioning of the temporal niche in a mammalian community in response to both the rapid decline in abundance of a top predator and its rapid increase, produced by two concurrent natural experiments: 1) the severe decline of the Tasmanian devil due to a transmissible cancer, and 2) the introduction of Tasmanian devils to an island, with subsequent population increase. We focus on devils, two mesopredators and three prey species, allowing us to examine niche partitioning in the context of intra‐ and inter‐specific competition, and predator–prey interactions. The most consistent shift in temporal activity occurred in devils themselves, which were active earlier in the night at high densities, presumably because of heightened intraspecific competition. When devils were rare, their closest competitor, the spotted‐tailed quoll, increased activity in the early part of the night, resulting in increased overlap with the devil's temporal niche and suggesting release from interference competition. The invasive feral cat, another mesopredator, did not shift its temporal activity in response to either decreasing or increasing devil densities. Shifts in temporal activity of the major prey species of devils were stronger in response to rising than to falling devil densities. We infer that the costs associated with not avoiding predators when their density is rising (i.e. death) are higher than the costs of continuing to adopt avoidance behaviours as predator densities fall (i.e. loss of foraging opportunity), so rising predator densities may trigger more rapid shifts. The rapid changes in devil abundance provide a unique framework to test how the non‐lethal effects of top predators affect community‐wide partitioning of temporal niches, revealing that this top predator has an important but varied influence on the diel activity of other species.  相似文献   

9.
Interspecific variation in diel-scale temporal niches is common in natural communities. Such variation changes population dynamics via effects on the growth and reproduction of individuals. Also at the community level, theory predicts that animals can reduce competition for shared resources by changing diel activity in certain situations. However, the role of diel activity at the community-level has not been examined sufficiently. In this study, to examine whether the diel-scale temporal niche act as a competition-mitigating mechanism for stream fishes at the community level, we surveyed diel changes in microhabitat use and foraging, and the pattern of interspecific diet overlap in the middle reaches of a temperate stream where various fish species that seemed to be either nocturnal or diurnal coexisted. Our results suggest that the fishes forage during both daytime and night, but change their foraging mode at different times of the day, so that the foraging habits of these fish species cannot be divided simply into nocturnal and diurnal. Furthermore, fishes appeared to aggregate in the vicinity of common food resources during time zones with high availability of the resources, and therefore, inter-guild diet overlap was high during certain time zones. On the other hand, when inter-guild diet overlap was low, each fish species used foods or microhabitats that did not any have the potential to be used by species of another guild. Therefore, we conclude that variation in diel niche use is influenced by variation in the fundamental niche and food supply or availability rather than by competitive interaction between fishes in the stream fish community.  相似文献   

10.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

11.
In natural environments, predation risk varies over time. The risk allocation hypothesis predicts that prey is expected to adjust key anti‐predator behaviours such as vigilance to temporal variation in risk. We tested the predictions of the risk allocation hypothesis in a natural environment where both a species‐rich natural predator community and human hunters are abundant and where the differences in seasonal and circadian activity between natural and anthropogenic predators provided a unique opportunity to quantify the contributions of different predator classes to anti‐predator behaviour. Whereas natural predators were expected to show similar levels of activity throughout the seasons, hunter activity was high during the daytime during a clearly defined hunting season. According to the risk allocation hypothesis, vigilance should then be higher during the hunting season and during daytime hours than during the non‐hunting season and night‐time hours. Roe deer (Capreolus capreolus) on the edge of Bia?owie?a Primeval Forest in Eastern Poland displayed vigilance behaviour consistent with these predictions. The behavioural response of roe deer to temporarily varying predation risks emphasises the behavioural plasticity of this species and suggests that future studies of anti‐predator behaviour need to incorporate circadian variation in predation pressure as well as risk gradients of both natural and anthropogenic predators.  相似文献   

12.
Understanding diel patterns in sea urchin activity is important when assessing sea urchin populations and when interpreting their interactions with predators. Here we employ a combination of surveys and a non-invasive tethering technique to examine these patterns in an intact coral reef system on the Great Barrier Reef (GBR). We also assess local scale variation in relative diurnal predation pressure. Surveys revealed that sea urchins were active and exposed at night. Echinometra mathaei and Echinothrix calamaris were the most abundant species with significantly higher night densities (0.21 and 0.03 ind. m−2, respectively), than daytime densities (0.05 and 0.001, respectively). Bioassays revealed that exposed adult E. mathaei (the most abundant sea urchin species) were 30.8 times more likely to be eaten during the day than at night when controlling for sites. This observation concurs with widely held assumptions that nocturnal activity is a risk-related adaptive response to diurnal predation pressure. Despite relatively intact predator communities on the GBR, potential predation pressure on diurnally exposed E. mathaei assays was variable at a local scale and the biomass of potential fish predators at each site was a poor predictive measure of this variation. Patterns in predation appear to be more complex and variable than we may have assumed.  相似文献   

13.
A visual foraging model (VFM) used light-dependent reaction distance and capture success functions to link observed prey fish abundance and distribution to predation rates and the foraging performance of piscivorous cutthroat trout Oncorhynchus clarki in Lake Washington (WA, U.S.A.). Total prey density did not correlate with predation potential estimated by the foraging model for cutthroat trout because prey were rarely distributed in optically favourable conditions for detection. Predictions of the depth-specific distribution and timing of cutthroat trout foraging were qualitatively similar to diel stomach fullness patterns observed in field samples. Nocturnal foraging accounted for 34–64% of all prey fish consumption in simulations for 2002 and 2003. Urban light contamination increased the access of nocturnally foraging cutthroat trout to vertically migrating prey fishes. These results suggest that VFMs are useful tools for converting observed prey fish density into predictions of predator consumptions and behavioural responses of predators to environmental change.  相似文献   

14.
Prey densities often show fluctuating patterns over various timescales. Focusing on short-term, within-generation fluctuating patterns of local prey availability, we suggest that prey that show synchronized and high-amplitude fluctuations in availability experience decreased risks of predation, but also enhance the maintenance of predator interference hierarchies by affecting the relative foraging success of unequal conspecific interferers. When predators interfere with each other, they forage less intensely on prey, which benefits prey in terms of decreased predation risk. The system hence involves a positive feedback. We thus argue that short-term temporal fluctuations in local prey availability could be an important mechanism behind how interference-structured social predator systems are developed and sustained. The temporal fluctuations also have implications for the phenotypic diversity of predators, and may be involved in speciation processes.  相似文献   

15.
Prey response to novel predators influences the impacts on prey populations of introduced predators, bio-control efforts, and predator range expansion. Predicting the impacts of novel predators on native prey requires an understanding of both predator avoidance strategies and their potential to reduce predation risk. We examine the response of island foxes (Urocyon littoralis) to invasion by golden eagles (Aquila chrysaetos). Foxes reduced daytime activity and increased night time activity relative to eagle-na?ve foxes. Individual foxes reverted toward diurnal tendencies following eagle removal efforts. We quantified the potential population impact of reduced diurnality by modeling island fox population dynamics. Our model predicted an annual population decline similar to what was observed following golden eagle invasion and predicted that the observed 11% reduction in daytime activity would not reduce predation risk sufficiently to reduce extinction risk. The limited effect of this behaviorally plastic predator avoidance strategy highlights the importance of linking behavioral change to population dynamics for predicting the impact of novel predators on resident prey populations.  相似文献   

16.
While diel vertical migration in zooplankton has been shownrecently to be a predator avoidance behavior, the mechanismby which predators induce and maintain such behavior has beendebated. We report results of an in situ predator manipulationexperiment during which enclosed populations of the marine planktomccopepod Acaraa hudsonica rapidly changed their vertical distributionand diel migration behavior depending on presence or absenceof the planktivorous fish Casterosteus aculeatus These resultspoint unambiguously to phenotypic behavioral plasticity of individualplanktonic prey, not, as previously hypothesized, population-geneticlevel behavioral changes caused by selective fish predation,as the mechanism underlying changes in diel vertical migrationin this copepod.  相似文献   

17.
Diel migration is a common predator avoidance mechanism commonly found in temperate water bodies and increasingly in tropical systems. Previous research with only single day and night samples suggested that the endemic shrimp, Halocaridina rubra, may exhibit diel migration in Hawaiian anchialine pools to avoid predation by introduced mosquito fish, Gambusia affinis, and perhaps reverse migration to avoid the predatory invasive Tahitian prawn, Macrobrachium lar. To examine this phenomenon in greater detail, we conducted a diel study of H. rubra relative abundance and size at 2-h intervals in three anchialine pools that varied in predation regime on the Kona-Kohala Coast of Hawai‘i Island. We found two distinct patterns of diel migration. In two pools dominated by visually feeding G. affinis, the abundance of H. rubra present on the pool bottom or swimming in the water column was very low during the day, increased markedly at sunset and remained high until dawn. In contrast, in a pool dominated by the nocturnal predator M. lar, H. rubra density was significantly lower during the night than during the day (i.e., a pattern opposite to that of shrimp in pools containing fish). In addition, we observed that the mean body size of the shrimp populations varied among pools depending upon predator type and abundance, but did not vary between day and night in any pools. Our results are consistent with the hypothesis that H. rubra diel migratory behavior and size distributions are influenced by predation regime and suggest that diel migration may be a flexible strategy for predator avoidance in tropical pools where it may be a significant adaptive response of endemic species to introduced predators.  相似文献   

18.
王亚  付成  胡月  付世建 《水生生物学报》2021,45(5):1154-1163
为了比较早期捕食胁迫经历和当前环境中存在的捕食者对鱼类行为的影响,并考查这些影响是否存在种间差异,研究分别考查了测定环境(有、无捕食者存在)对有、无捕食胁迫经历的鳊(Parabramis pekinensis)、草鱼(Ctenopharyngodon idellus)、鲫(Carassius auratus)和中华倒刺鲃(Spinibarbus sinensis)等4种鲤科鱼类探索性、活跃性和勇敢性的影响。结果发现:早期捕食胁迫经历与当前环境条件对鱼类行为产生截然不同的影响,且存在较大的种间差异。无捕食胁迫经历的鳊、草鱼和中华倒刺鲃均会对陌生的捕食者乌鳢(Channa argus)做出行为响应,提示这3种鱼可能对陌生捕食者具有一定的识别能力,但这种识别与猎物鱼通过捕食胁迫经历获得的识别仍具有一定差距;具有捕食胁迫经历的鳊和中华倒刺鲃在空白环境中未表现出反捕食行为,可能是节约能量的一种策略。总体而言,草鱼对捕食胁迫经历和测定环境处理反应更为敏感,而中华倒刺鲃的反应则相对保守。但当周围环境中存在捕食者时, 4种鲤科鱼类均会通过维持较高运动状态的方式来应对捕食者。维持这种应激状态可能对猎物鱼...  相似文献   

19.
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.  相似文献   

20.
Learning to avoid toxic prey items may aid native predators to survive the invasion of highly toxic species, such as cane toads Bufo marinus in tropical Australia. If the predators’ initial aversion is generalized, native prey that resemble the toxic invader may receive a benefit through accidental mimicry. What ecological factors influence the acquisition of learned avoidance (and hence, the impact of invasion on both predators and native prey)? We conducted laboratory experiments to evaluate how the relative abundance of toad tadpoles compared to palatable native tadpoles (Litoria caerulea and L. rubella) affected the ability of native aquatic predators to discriminate between these two prey types. Both fish (northern trout gudgeon, Mogurnda mogurnda) and frogs (Dahl's aquatic frog, Litoria dahlii) learned to discriminate between toads and frogs within an eight‐day period. Higher abundance of toad tadpoles relative to frog tadpoles enhanced rates of predator learning, and thus reduced predation on toads and increased predation on native tadpoles. In the field, spatial and temporal variation in the relative abundance of cane toads compared to native frogs may influence the rates at which these novel toxic items are deleted from predator diets, and the duration of predator protection afforded to natives that resemble the invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号