首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crematogaster sp. is a dominant arboreal ant species that captures and retrieves very large prey. Hunting workers forage collectively thanks to short-range recruitment. They detect prey by contact, then rapidly attack, seizing small prey by the body and large prey by a leg. In this study, almost all the active prey were spread-eagled by several workers, even when small enough to permit a single worker to easily master them. While certain workers spread-eagled the prey, others deposited venom on the prey body using their spatulated sting (topical action of the venom). The well-developed arolia on the pretarsus of workers' legs have crucial importance for the success of prey capture (spread-eagling) and transport in an arboreal habitat. These results are compared with those known for other arboreal-dwelling generalist predator ant species.  相似文献   

2.
Dejean A 《PloS one》2011,6(5):e19837
I studied the predatory behavior of Platythyrea conradti, an arboreal ponerine ant, whereas most species in this subfamily are ground-dwelling. The workers, which hunt solitarily only around dusk, are able to capture a wide range of prey, including termites and agile, nocturnal insects as well as diurnal insects that are inactive at that moment of the Nyctemeron, resting on tree branches or under leaves. Prey are captured very rapidly, and the antennal palpation used by ground-dwelling ponerine species is reduced to a simple contact; stinging occurs immediately thereafter. The venom has an instant, violent effect as even large prey (up to 30 times the weight of a worker) never struggled after being stung. Only small prey are not stung. Workers retrieve their prey, even large items, singly. To capture termite workers and soldiers defending their nest entrances, ant workers crouch and fold their antennae backward. In their role as guards, the termites face the crouching ants and end up by rolling onto their backs, their legs batting the air. This is likely due to volatile secretions produced by the ants' mandibular gland. The same behavior is used against competing ants, including territorially-dominant arboreal species that retreat further and further away, so that the P. conradti finally drive them from large, sugary food sources.  相似文献   

3.
Plectroctena minor workers have long mandibles that can snap and deliver a sharp blow to intruders or prey, stunning or killing them. Encounters between homocolonial P. minor workers separated for 24 h or 15 days never resulted in snapping, while this behaviour was always noted during encounters between heterocolonial workers on neutral arenas or on the territory of a colony. In the latter case, only the aliens, that generally tried to escape, were snapped at. Snapping also occurred during encounters with workers belonging to sympatric ponerine species. During predation, the percentages of snapping varied according to prey nature, suggesting prey discrimination. Termite soldiers were always snapped at, while other prey were more often snapped close to rather than far from the nest entrances, indicating an intermingling of territorial aggressiveness and predatory behaviour. We discuss the adaptive value of snapping for hunting in galleries.  相似文献   

4.
Foraging strategy of ant workers has been studied from several aspects, however, the mode of prey retrieval and factors affecting it have been rarely studied to date, even thought it is an important aspect for understanding ant foraging strategy. We investigated the behavioral response against large prey for 44 ant species of 34 genera belonging to eight subfamilies in Japan, Malaysia and Indonesia. Workers of most arboreal ants cut-up large prey at the site of prey capture, and individual workers retrieve the smaller pieces to the nests. In contrast, in most ground-living species, a group of workers retrieve large prey cooperatively without fragmentation. On the ground, parts of the prey item were often robbed by other ant species during this process, while such interference was rare on trees. The significance of the relation between nest site and mode of prey retrieval is discussed.  相似文献   

5.
Plant-ants live in a mutualistic association with host plants known as “myrmecophytes” that provide them with a nesting place and sometimes with extra-floral nectar (EFN) and/or food bodies (FBs); the ants can also attend sap-sucking Hemiptera for their honeydew. In return, plant-ants, like most other arboreal ants, protect their host plants from defoliators. To satisfy their nitrogen requirements, however, some have optimized their ability to capture prey in the restricted environment represented by the crowns of trees by using elaborate hunting techniques. In this study, we investigated the predatory behavior of the ant Azteca andreae which is associated with the myrmecophyte Cecropia obtusa. We noted that up to 8350 ant workers per tree hide side-by-side beneath the leaf margins of their host plant with their mandibles open, waiting for insects to alight. The latter are immediately seized by their extremities, and then spread-eagled; nestmates are recruited to help stretch, carve up and transport prey. This group ambush hunting technique is particularly effective when the underside of the leaves is downy, as is the case for C. obtusa. In this case, the hook-shaped claws of the A. andreae workers and the velvet-like structure of the underside of the leaves combine to act like natural Velcro® that is reinforced by the group ambush strategy of the workers, allowing them to capture prey of up to 13,350 times the mean weight of a single worker.  相似文献   

6.
1. The characterisation of energy flow through communities is a primary goal of ecology. Furthermore, predator–prey interactions can influence both species abundance and community composition. The ant subfamily Ponerinae includes many predatory species that range from generalist insectivores to highly specialised hunters that target a single prey type. Given their high diversity and ubiquity in tropical ecosystems, measuring intra- and interspecific variation in their trophic ecology is essential for understanding the role of ants as predators of insect communities. 2. The stable isotopic composition of nitrogen of 22 species from the ant subfamily Ponerinae was measured, relative to plants and other predatory and herbivorous insects at two Atlantic Forest sites in Argentina. The study tested the general assumption that ponerine ants are all predatory, and examined intra- and interspecific variation in trophic ecology relative to habitat, body size and cytochrome c oxidase subunit 1 sequences (DNA barcoding). 3. Stable isotope analysis revealed that most ponerines occupy high trophic levels (primary and secondary predators), but some species overlapped with known insect herbivores. Species residing at low trophic levels were primarily arboreal and may rely heavily on nectar or other plant-based resources in their diet. In addition, larger species tend to occupy lower trophic positions than smaller species. 4. Although some of the species were divided into two or more genetic clusters by DNA barcoding analysis, these clusters did not correspond to intraspecific variation in trophic position; therefore, colony dietary flexibility most probably explains species that inhabit more than one trophic level.  相似文献   

7.
Swarm raiding army ants, with hundreds of thousands or millions of workers per colony, have evolved convergently in the Old World and New World tropics. Here we demonstrate for the first time, to our knowledge, superefficient foraging teams in Old World army ants and we compare them quantitatively with such teams in New World army ants. Colonies of Dorylus wilverthi in the Old World and Eciton burchelli in the New World retrieve almost identical sizes of prey item and the overall size range of their workers is very similar. However, 98% of D. wilverthi workers are within the size range of the smallest 25% of E. burchelli workers. In E. burchelli larger workers specialize in prey retrieval, whereas in D. wilverthi workers form many more teams than in E. burchelli. Such teams compensate for the relative rarity of larger workers in Dorylus. The proportions of prey items retrieved by teams in Dorylus and Eciton are 39% and 5%, respectively. The percentages of all prey biomass retrieved by teams in Dorylus and Eciton are 64% and 13%, respectively. Working either as single porters or teams, Dorylus carry more per unit ant weight than do Eciton, but Eciton are swifter. However, these different ergonomic factors counterbalance one another, so that performance at the colony level is remarkably, although by no means completely, similar between the Old and New World species. The remaining differences are attributable to adaptations in worker and colony tempo associated with the recovery dynamics of their prey populations. Our comparative analysis provides a unique perspective on worker-level and colony-level adaptations and is a special test of the theory of worker caste distributions.  相似文献   

8.
《Comptes rendus biologies》2014,337(7-8):474-479
In the Neotropics where it was introduced, the invasive ant Pheidole megacephala counterattacked raids by the army ants Eciton burchellii or E. hamatum. The Eciton workers that returned to their bivouac were attacked and spread-eagled and most of them killed by their outgoing colony mates. Little by little the zone where returning and outgoing Eciton workers encountered one another moved away from the Pheidole nest which was no longer attacked, so that most of the colony was spared. Using a water-based technique rounded out by bioassays, we show that Pheidole compounds were transferred onto the Eciton cuticle during the counterattacks, so that outgoing workers do not recognize returning colony mates, likely perceived as potential prey. Because P. megacephala is an introduced African species, this kind of protection, which cannot be the result of coevolutive processes, corresponds to a kind of by-product due to its aggressiveness during colony defence.  相似文献   

9.
We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species—a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native, territorially dominant arboreal ants normally able to limit its progression.  相似文献   

10.
Little is known about the aggressiveness of plant-ants typically living in isolated trees nor about how that aggressiveness varies based on this isolation. Here, we examine intra- and interspecific aggressiveness between workers of two Allomerus species associated with two different myrmecophytes. In both cases, the level of intraspecific aggressiveness is very low whatever the distance separating the tested nests, while interspecific conflicts are always violent. Similar patterns of aggressiveness have been reported in various ant species, but the strictly arboreal life of Allomerus ants associated with the isolation of their adult colonies highlight different ecological conditions that might explain the lack of aggressiveness between conspecifics. Received 18 December 2007; revised 12 March 2008; accepted 13 March 2008.  相似文献   

11.
Workers of the pest ant Paratrechina longicornis participate in a type of group hunting. Each individual forages with its long antennae wide open and moves quickly (6.3 cm/s) along an erratic path surrounded by nestmates behaving in the same way and within range of a recruiting pheromone. They detect prey by contact with successful workers singly capturing and retrieving small prey and seizing larger ones by an appendage. Then they recruit nestmates at short-range; all together they spread-eagle the prey and retrieve them whole.  相似文献   

12.
《Comptes rendus biologies》2014,337(11):642-645
It was recently shown that Pheidole megacephala colonies (an invasive species originating from Africa) counterattack when raided by the army ant, Eciton burchellii. The subsequent contact permits Pheidole cuticular compounds (that constitute the “colony odour”) to be transferred onto the raiding Eciton, which are then not recognised by their colony-mates and killed. Using a simple method for transferring cuticular compounds, we tested if this phenomenon occurs for Neotropical ants. Eciton workers rubbed with ants from four sympatric species were released among their colony-mates. Individuals rubbed with Solenopsis saevissima or Camponotus blandus workers were attacked, but not those rubbed with Atta sexdens, Pheidole fallax or with colony-mates (control lot). So, the chemicals of certain sympatric ant species, but not others, trigger intra-colonial aggressiveness in Eciton. We conclude that prey-ant chemicals might have played a role in the evolution of army ant predatory behaviour, likely influencing prey specialization in certain cases.  相似文献   

13.
Paltothyreus tarsatus workers show an adaptive predatory strategy compatible with central place theory which predicts that single-prey loading is an extension of the optimal diet choice while multiple-prey loading behavior would correspond to the optimal use of patches. The insight learning involved in the quick modifications of predatory strategy enablesP. tarsatus to hunt all available prey in a great diversity of sizes and species. Nevertheless, this generalist predator strongly preferred termites and very large prey such as giant diplopods and crickets to other choices within its diet. In the hunting of these favorite prey, the recruitment of nestmates enhanced the efficiency of total predation, though the release of a chemical trail appeared to depend on the hunger-satiety balance of the colony. In addition to the hunger, the miscapture of prey also triggered the release of chemical trails. The strategy for capturing grouped termites was characterized by the loading of multiple prey at a single time, by a concentrated search in a restricted area and by an optional recruitment of nestmates. These behavioral characteristics of ponerine ants probably account for the flexibility of their predatory strategy for hunting aggregated small prey.  相似文献   

14.
Food acquisition in central-place foraging animals demands efficient detection and retrieval of resources. Most ant species rely on a mass recruitment foraging strategy, which requires that some potential foragers remain at the nest where they can be recruited to food once resources are found. Because this strategy reduces the number of workers initially looking for food, it may reduce the food detection rate while increasing the postdiscovery food retrieval rate. In previous studies this tradeoff has been analyzed by computer simulation and mathematical models. Both kinds of models show that food acquisition rate is greatly influenced by food distribution and resource patch size: as food is condensed into fewer patches, the maximal acquisition rate is achieved by a shift to fewer initial searchers and more potential recruits. In general, these models show that a mass recruitment strategy is most effective when resources are clumped. We tested this prediction in two experiments by letting laboratory colonies of the Argentine ant (Linepithema humile) forage for resources placed in different distributions. When all prey were small, retrieval rate increased with increasing resource patch size, in support of foraging models. When prey were large, however, the mass of prey returned to the colony over time was much lower than when prey were small and widely distributed. As more ants reached a large prey item, the distance the prey item was transported decreased due to a greater emphasis on feeding rather than transport. Because Argentine ants can transport more biomass externally than they can ingest, food retrieval that depends only on ingestion can depress the biomass retrieval rate. Thus, our results generally support theoretical foraging models, but we show how prey size, through differential prey-handling behavior, can produce an outcome greatly different from that predicted only on the distribution of resources.  相似文献   

15.
With respect to prey selectivity and predation frequency, chimpanzees (Pan troglodytes) show local differences as well as diachronic variability within the same population. When data on predation from three long-term studies at Mahale, Gombe, and Tai are compared, some differences and similarities emerge; Mahale is more like Gombe than Tai in regard of prey selection but features of hunting at Tai with respect to predation frequency are not conspicuous. The most responsible factor for diversity in prey selectivity is a distinct “prey image” maintained by chimpanzees of different populations, although it is necessary to clarify in future studies why and how such tradition develops. Relative body size of chimpanzees to prey species and/or the degree of cooperation among members of a hunting party may explain the variability in prey size selected at each site, the latter influencing the frequency of successful hunts at the same time. Although various degrees of habituation and different sampling methods including artificial feeding might have obscured the real differences, recent data from the three populations do not seem to be biased greatly by such factors. Nevertheless, it is still difficult to make strict comparisons due to the lack of sufficient standardized data across the three populations on the frequency of hunting and predation. It is suggested that the size or demographic trend of a chimpanzee unit-group, especially the number of adult males included, necessarily influences its hunting frequency as well as its prey profile. It is also suggested that factors which bring these males together into a party (e.g. fruit abundance, swollen females, conflict between unit-groups etc.) strongly affect theactual hunting and kill rates. Other possible factors responsible for the local differences are forest structure (e.g. tree height), skilful “hero” chimpanzees, and competition with sympatric carnivorous animals. A total of at least 32 species have been recorded as prey mammals of chimpanzees from 12 study sites and the most common prey mammals are primates (18 species), of which 13 species are forest monkeys. Forest monkeys, colobine species in particular, are often the most common victims of the predation by chimpanzees at each site. We may point out a tendency toward selective hunting for the forest monkeys in terms of the selectivity of prey fauna among all three subspecies of chimpanzees, including populations living in drier environment. The mode of chimpanzee hunting seems to correspond to the highest available biomass of gregarious, arboreal monkeys in the forest, colobine species in particular. In contrast, bonobos (P. paniscus) are less carnivorous than chimpanzees, only rarely preying on a few species of small mammals. The sharp contrast of the two allied species in their predatory tendencies appears to have something to do with the differences in the structure of primary production between their habitats.  相似文献   

16.
Summary. The ability of worker ants to adapt their behaviour depending on the social environment of the colony is imperative for colony growth and survival. In this study we use the greenhead ant Rhytidoponera metallica to test for a relationship between colony size and foraging behaviour. We controlled for possible confounding ontogenetic and age effects by splitting large colonies into small and large colony fragments. Large and small colonies differed in worker number but not worker relatedness or worker/brood ratios. Differences in foraging activity were tested in the context of single foraging cycles with and without the opportunity to retrieve food. We found that workers from large colonies foraged for longer distances and spent more time outside the nest than foragers from small colonies. However, foragers from large and small colonies retrieved the first prey item they contacted, irrespective of prey size. Our results show that in R. metallica, foraging decisions made outside the nest by individual workers are related to the size of their colony.Received 23 March 2004; revised 3 June 2004; accepted 4 June 2004.  相似文献   

17.
In French Guiana, the arboreal nests of the swarm-founding social wasp Protopolybia emortualis (Polistinae) are generally found near those of the arboreal dolichoderine ant Dolichoderus bidens. These wasp nests are typically protected by an envelope, which in turn is covered by an additional carton ‘shelter’ with structure resembling the D. bidens nests. A few wasps constantly guard their nest to keep D. bidens workers from approaching. When alarmed by a strong disturbance, the ants invade the host tree foliage whereas the wasps retreat into their nest. Notably, there is no chemical convergence in the cuticular profiles of the wasps and ants sharing a tree. The aggressiveness of D. bidens likely protects the wasps from army ant raids, but the ants do not benefit from the presence of the wasps; therefore, this relationship corresponds to a kind of commensalism.  相似文献   

18.
We studied the prey specialization of Plectroctena minor, a ponerine ant known to capture mostly millipedes. We compared the prey spectrum of the hunting workers from large colonies with that of the founding queens. The hunting workers captured all kinds of tested prey, but hunted mostly millipedes. Founding queens, which avoided relatively large prey, including the millipedes tested, captured mostly isopods under experimental conditions. We also verified that the presence of millipedes in the diet of the larvae of large colonies was necessary for the production of winged females and strongly enhanced the production of workers, permitting us to assert that P. minor is a predatory species specialized in the capture of millipedes. In contrast, the presence of millipedes had no impact on the production of males. We thus assert that millipedes constitute the 'essential prey' of P. minor, while other arthropod taxa are therefore 'alternative prey'.  相似文献   

19.
Summary We traced the development in the laboratory of 18 young colonies of the arboricolous ponerine antEctatomma tuberculatum. Colony foundation is of the partially-claustral type. During the early stages, when the colony is entirely dependent on the queen's behavior, the growth of the colony in terms of number of workers produced over time was relatively predictable. Afterwards, divergence in colony growth in function of the time increases as fast as the number of workers influences the efficiency of colony provisioning.Comparative analysis indicated clear changes in the predation behavior of foundresses and workers as colonies developed. For any stage of colony growth, all individuals provisioned the nest with dead prey or sugar-rich substances in the same way. However, prey hunting involves two different strategies. Foundresses and nanitic workers (originating from colonies with 9–15 workers) foraged actively, catching prey as the result of random encounters. Post-nanitic foragers (originating from colonies with 20–30 workers) and those from nature colonies developed an ambush strategy. Workers in these colonies gained experience at catching and handling prey during a period when they acted as nest guards, and so tended to be more efficient hunters than poorly experienced foundresses or nanitic foragers. The change in strategy was also positively correlated with an increase in the size of workers as the colony matured. A stable maximum in workers size is apparently reached only after the appearance of efficiently hunting foragers, presumably in numbers sufficient to provide adequate quantity and quality of larval food. Such a correlation between worker size and colony growth, assumed general for all ants, has not been demonstrated for Ponerinae before this work.  相似文献   

20.
The hunting behavior of the African ponerine ant Pachycondyla pachyderma, a semi-specialized centipede predator, appears well adapted to this kind of prey and shows a graded complexity according to the difficulty it has in overwhelming prey. Small prey (5-to-8-mm-long termites) were detected by contact and seized by the thorax while larger prey (≥30-mm-long centipedes) were frequently detected from a distance and seized by the anterior-most part of their body. Termites and 30-mm-long lithobiomorph centipedes were not always stung, whereas stinging and even repeated stinging was needed for 50-mm-long geophilomorphs and scolopendromorphs. Moreover, overwhelming wide and heavy scolopendromorphs, which have better defensive abilities, involved the use of additional behaviors allowing the workers to capture them safely: venom spreading, and a peculiar stinging posture, the “fatal embrace”. Here the workers seize scolopendromorphs by an antenna or by one of their first legs, wrap themselves around the prey while maintaining their grip with their mandibles and legs, and slowly inject venom into the prey's ventral surface. Workers retrieve small prey solitarily while, for large geophilomorphs and scolopendromorphs, nestmates can be recruited at short range or even at long range through tandem running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号