首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase C (PLC, EC 3.1.4.11) is the major starting point in the phosphatidylinositol pathway, which generates intracellular signals that regulate protein kinase C and intracellular calcium concentration. To date, three major types of phosphoinositide-specific PLC species named beta, gamma and delta, have been characterized. This article reviews recent studies on isozymes delta of PLC. Four such isozymes have been cloned and termed delta1-4. Their structural organization, regulation of activity and the interaction with membrane lipid are considered. The intracellular localization of delta isozymes and distribution in various tissues are presented. Attention is given to the pathological conditions in which an abnormal protein level of PLC delta or its activity have been observed.  相似文献   

2.
Four different isoforms of mammalian phospholipase C delta (PLCdelta) have been described. PLCdelta1, the best-understood isoform, is activated by an atypical GTP-binding protein. It has been suggested that it is a calcium signal amplifier. However, very less is known about other subtypes, including PLCdelta3. Therefore, in the present study, we examined the expression of PLCdelta3 in different human tissues. Moreover, the cellular underlying regulation for PLCdelta3 was studied in different cell lines. Our study showed that the mRNA and protein levels differed significantly among human tissues. The human PLCdelta3 gene was composed of 15 exons and 1 putative cAMP response element in the 5'-end promoter region. PLCdelta3 mRNA expression was downregulated by cAMP and calcium in both the human normal embryonic lung tissue diploid WI38 cell line and the glioblastoma/astrocytoma U373 cell line. However, mRNA expression showed no impact by PKC activators or inhibitors. This study shows the human PLCdelta3 expression pattern and is the first report that PLCdelta3 gene expression is downregulation by cAMP and calcium.  相似文献   

3.
Phospholipase C delta (PLC delta) is strongly inhibited by sphingomyelin (SM). The inhibition occurs in both the presence and the absence of spermine, an activator of PLC delta. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) also inhibit PLC delta in the presence of spermine but are much less effective than SM. PE and PC activate and PS and PI inhibit PLC delta in the absence of spermine. Again, the inhibition by PS and PI is much weaker than the inhibition observed with SM. Similar or identical effects are observed in detergent micelle and liposome assays. Comparisons of physiological concentrations of SM with concentrations yielding 50% inhibition of PLC delta in vitro indicate that SM is likely to be a major factor in regulating the activity of PLC delta by inhibition. It is proposed that, in vivo, sphingomyelin acts as an inhibitor of PLC delta, which enables the enzyme to be regulated by activation. In certain circumstances, there is a substantial decline in SM and this may lead to a partial relief of the inhibition. PLC delta is activated by sphingosine in the absence of spermine. However, this activation occurs at unphysiologically high concentrations of sphingosine. The effects of SM and sphingosine on PLC delta in marked contrast to those observed with protein kinase C, which is unaffected by sphingomyelin and inhibited by sphingosine.  相似文献   

4.
Sequence analysis of a inositol-phospholipid-specific phospholipase C (PtdIns-PLC) purified from bovine brain has led to the isolation of a novel cDNA that encodes this protein. While this cDNA contains two introns, these appear to be removed upon transfection of the cDNA into COS-1 cells. The protein transiently expressed in COS-1 cells shows phosphatidylinositol 4,5-bisphosphate hydrolysing activity which distributes preferentially into the particulate fraction. Comparison of the predicted amino acid sequence of this PtdIns-PLC with other known PtdIns-PLCs reveals a high degree of similarity, throughout all of its sequence, with PtdIns-PLC delta. Thus, we believe that the identification of this cDNA represents evidence for multiple functional-gene products within the delta subclass of PtdIns-PLCs.  相似文献   

5.
6.
7.
Phospholipase C from rat liver with a molecular weight of 87,000 (PLC delta) is stimulated by polyamines, basic proteins, and basic polyamino acids. The activation occurs in both the presence and the absence of detergents. Half-maximum activation by spermine is observed at 0.15 mM, with optimum effects between 0.2 and 0.5 mM. Spermine inhibits above 0.5 mM. Half-maximum activation by spermidine and putrescine is observed at 0.9 and 6 mM, respectively, with optimum effects at 2 and 5 mM, respectively. These polyamines also inhibit at higher concentrations. Neomycin activates the enzyme with an optimum concentration of 10 microM, but maximum activation is less than with polyamines. Half-maximum activation by histone 2B occurs at 0.5 micrograms/ml (36 nM), with maximum stimulation at 1.5 micrograms/ml. Other histones, protamine, melittin, poly-L-ornithine, poly-L-lysine, poly-D-lysine, and poly-L-arginine, activate optimally at 3-10 micrograms/ml. Myelin basic protein and lysozyme activate optimally at 50-100 micrograms/ml. Typical activations are three- to eightfold, but under some conditions the enzyme shows little or no activity in the absence of basic activators. The basic activators lower the salt concentration required for maximal activity. In the case of the detergent-micelle assay, histone shifts the optimum NaCl concentration from 350 to 200 mM for PIP2, from 260 to 100 mM for PIP, and from 150 to 0 mM for PI. Histone potentiates the activation by Ca2+, but does not shift the optimum Ca2+ concentration. The optimum salt and Ca2+ concentrations are linked, such that a decrease in the concentration of one decreases the optimum concentration of the other. Activation by histone is diminished by MgCl2 in a concentration-dependent manner.  相似文献   

8.
Phospholipase C (PLC, EC 3.1.4.11) is an enzyme crucial for the phosphoinositol pathway and whose activity is involved in eukaryotic signal transduction as it generates two second messengers: diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). There are four major types of phospholipase C named: beta, gamma, delta and the recently discovered epsilon, but this review will focus only on the recent advances for the delta isozymes of PLC. So far, four delta isozymes (named delta1-4) have been discovered and examined. They differ with regard to cellular distribution, activities, biochemical features and involvement in human ailments.  相似文献   

9.
Spontaneously hypertensive rats (SHR), which develop hypertension approximately 10 weeks after birth, are considered to provide a good animal model for human essential hypertension. We report here that the abnormal activation of phospholipase C delta 1 (PLC-delta 1) may be one of the main causes of hypertension. Levels of the second messengers inositol 1,4,5-trisphosphate and diacylglycerol are found to be higher in the aortas of 12-week-old SHR than in age-matched normotensive Wistar-Kyoto rats (WKY), although the levels in the aortas of 7-week-old SHR, which have normal blood pressure, are the same as in WKY. Moreover, PLC activity is also higher in the aortas of 12-week-old SHR. Judging from Western blot analysis and immunoabsorption of PLCs, this activation is found to be due to that of PLC-delta 1. PLC-delta 1 from rat aorta is expressed significantly from 7 to 12 weeks, which correlates with the development of hypertension in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is more markedly activated at low Ca2+ concentration than that of age-matched WKY. These results suggest that the abnormal enhancement of PLC-delta 1 activity is responsible for accumulation of inositol 1,4,5-trisphosphate and diacylglycerol, leading to continuous hypertonicity of vascular smooth muscle in SHR. The activity of PLC-delta 1 in the aortas of 12-week-old SHR is significantly higher at low Ca2+ concentration than that of normotensive WKY.  相似文献   

10.
In this study, we found that the phospholipase C delta1 (PLCD1) protein expression is reduced in colorectal tumor tissues compared with paired surgical margin tissues. PLCD1-promoted CpG methylation was detected in 29/64 (45%) primary colorectal tumors, but not in nontumor tissues. The PLCD1 RNA expression was also reduced in three out of six cell lines, due to PLCD1 methylation. The ectopic expression of PLCD1 resulted in inhibited proliferation and attenuated migration of colorectal tumor cells, yet promoted colorectal tumor cell apoptosis in vitro. We also observed that PLCD1 suppressed proliferation and promoted apoptosis in vivo. In addition, PLCD1 induced G1/S phase cell cycle arrest. Furthermore, we found that PLCD1 led to the downregulation of several factors downstream of β-catenin, including c-Myc and cyclin D1, which are generally known to be promoters of tumorigenesis. This downregulation was caused by an upregulation of E-cadherin in colorectal tumor cells. Our findings provide insights into the role of PLCD1 as a tumor suppressor gene in colorectal cancer (CRC), and demonstrate that it plays significant roles in proliferation, migration, invasion, cell cycle progression, and epithelial-mesenchymal transition. On the basis of these results, tumor-specific methylation of PLCD1 could be used as a novel biomarker for early detection and prognostic prediction in CRC.  相似文献   

11.
The concentration of free Ca(2+) and the composition of nonsubstrate phospholipids profoundly affect the activity of phospholipase C delta1 (PLCdelta1). The rate of PLCdelta1 hydrolysis of phosphatidylinositol 4,5-bisphosphate was stimulated 20-fold by phosphatidylserine (PS), 4-fold by phosphatidic acid (PA), and not at all by phosphatidylethanolamine or phosphatidylcholine (PC). PS reduced the Ca(2+) concentration required for half-maximal activation of PLCdelta1 from 5.4 to 0.5 microM. In the presence of Ca(2+), PLCdelta1 specifically bound to PS/PC but not to PA/PC vesicles in a dose-dependent and saturable manner. Ca(2+) also bound to PLCdelta1 and required the presence of PS/PC vesicles but not PA/PC vesicles. The free Ca(2+) concentration required for half-maximal Ca(2+) binding was estimated to be 8 microM. Surface dilution kinetic analysis revealed that the K(m) was reduced 20-fold by the presence of 25 mol % PS, whereas V(max) and K(d) were unaffected. Deletion of amino acid residues 646-654 from the C2 domain of PLCdelta1 impaired Ca(2+) binding and reduced its stimulation and binding by PS. Taken together, the results suggest that the formation of an enzyme-Ca(2+)-PS ternary complex through the C2 domain increases the affinity for substrate and consequently leads to enzyme activation.  相似文献   

12.
13.
Mammalian phosphoinositide-specific phospholipases C (PI-PLCs) are involved in most receptor-mediated signal transduction pathways. The mammalian isozymes employ a modular arrangement of domains to achieve a regulated production of two key second messengers. The roles of the PH, EF hand, C2, SH2 and SH3 modules in regulation of these enzymes and in interactions with membranes and other proteins is becoming apparent from recent structural and functional studies.  相似文献   

14.
Aspirin inhibits phospholipase C   总被引:1,自引:0,他引:1  
We have shown previously that aspirin (ASA) ingestion by normal human volunteers inhibits peripheral blood monocyte phospholipase C (PLC) activities ex vivo. In order to explore further the mechanism of action of ASA, normal human monocytes and differentiated human U937 cells were treated with ASA and other salicylates. Cells preincubated with ASA were found to have decreased PLC activities. Phospholipase A2 activities were not affected by salicylates. Sodium salicylate and salicylic acid, nonacetylated relatives of ASA also inhibited PLC activity. This effect was dose and time dependent and addition of cycloheximide or actinomycin D to the preincubation mixture abrogated the inhibitory effect of salicylates on PLC. This PLC inhibitory protein induced by ASA appears distinct from lipocortin, a phospholipase A2 inhibitory protein inducible by corticosteroids.  相似文献   

15.
The interaction of the isolated EF-hand domain of phospholipase C delta1 with arachidonic acid (AA) was characterized using circular dichroism (CD) and fluorescence spectroscopy. The far-UV CD spectral changes indicate that AA binds to the EF domain. The near-UV CD spectra suggest that the orientations of aromatic residues in the peptide are affected when AA binds to the protein. The fluorescence of the single intrinsic tryptophan located in EF1 was enhanced by the addition of dodecylmaltoside (DDM) and AA suggesting that this region of the protein is involved in hydrophobic interactions. In the presence of a low concentration of DDM it was found that AA induced a change in fluorescence resonance energy transfer, which is indicative of a conformational change. The lipid induced conformational change may play a role in calcium binding because the isolated EF-hand domain did not bind Ca2+ in the absence of lipids, but Ca2+-dependent changes in the intrinsic tryptophan emission were observed when free fatty acids were present. These studies identify specific EF-hand domains as allosteric regulatory domains that require hydrophobic ligands such as lipids.  相似文献   

16.
Phosphatidylinositide-specific phospholipase Cs (PI-PLCs) catalyze the calcium-dependent hydrolysis of phosphatidylinositides in response to diverse stimuli in higher eukaryotes. Mammalian PI-PLCs contain divergent regulatory regions, but all share three conserved regions: an N-terminal pleckstrin homology (PH) domain, X, and Y. We report the high-level expression and characterization of a recombinant "catalytic core" of rat PI-PLC delta 1 that contains the catalytically essential X and Y regions, but not the PH domain. The expressed protein, PI-PLC delta delta 1-134, is catalytically active versus phosphatidylinositol 4,5-bisphosphate in deoxycholate micelles with a K(m) of 182 microM and a Vmax of 27 mumol/min/mg. PI-PLC delta delta 1-134 is monomeric and monodisperse as judged by dynamic light scattering. Far-UV CD indicates a structure with approximately 35% alpha-helix. A reversible change in the near-UV CD spectrum is observed on addition of calcium, suggesting that calcium can bind PI-PLC delta delta 1-134 in the absence of phospholipid. Triclinic crystals of PI-PLC delta delta 1-134 have been obtained that diffract beyond 2.4 A resolution under cryogenic conditions. Based on Vm = 2.72 Da/A3 and on the self-rotation function, there are two PI-PLC delta delta 1-134 molecules per asymmetric unit that are related to each other by a noncrystallographic axis of approximate twofold symmetry parallel to a.  相似文献   

17.
Phosphatidylinositide-specific phospholipase C enzymes (PLCs) catalyze the conversion of the phosphoinositides to biologically important signal transducing molecules. These enzymes may be grouped into "families" which share similar structures and modes of regulation. The existence of a structurally distinct family of PLC termed "alpha" has been recently called into question. In the current paper we show by immunoblotting experiments that PLC "alpha" from sheep seminal vesicles is recognized by monoclonal antibodies raised against the delta 1 isoform of bovine brain PLC, and appears to be derived from a higher molecular weight band at 85 kDa. We also show that antibodies raised against PLC alpha efficiently immunoprecipitate the 85-kDa PLC delta 1 isoform from bovine brain and Chinese hamster lung fibroblasts. These data provide strong evidence that the PLC alpha from sheep seminal vesicles is a proteolytic fragment of PLC delta 1. Thus, there is still no conclusive evidence for a separate "alpha" class of PLC.  相似文献   

18.
Many studies have shown that protein kinase C (PKC) is an important physiological regulator of phospholipase D (PLD). However, the role of PKC in agonist-induced PLD activation has been mainly investigated with a focus on the PLD1, which is one of the two PLD isoenzymes (PLD1 and PLD2) cloned to date. Since the expression of PLD2 significantly enhanced phorbol 12-myristate 13-acetate (PMA)- or bradykinin-induced PLD activity in rat pheochromocytoma PC12 cells, we investigated the regulatory mechanism of PLD2 in PC12 cells. Two different PKC inhibitors, GF109203X and Ro-31-8220, completely blocked PMA-induced PLD2 activation. In addition, specific inhibition of PKC delta by rottlerin prevented PLD2 activation in PMA-stimulated PC12 cells. Concomitant with PLD2 activation, PLD2 became phosphorylated upon PMA or bradykinin treatment of PC12 cells. Moreover, rottlerin blocked PMA- or bradykinin-induced PLD2 phosphorylation in PC12 cells. Expression of a kinase-deficient mutant of PKC delta using adenovirus-mediated gene transfer inhibited the phosphorylation and activation of PLD2 induced by PMA in PC12 cells, suggesting the phosphorylation-dependent regulation of PLD2 mediated by PKC delta kinase activity in PC12 cells. PKC delta co-immunoprecipitated with PLD2 from PC12 cell extracts, and associated with PLD2 in vitro in a PMA-dependent manner. Phospho-PLD2 immunoprecipitated from PMA-treated PC12 cells and PLD2 phosphorylated in vitro by PKC delta were resolved by two-dimensional phosphopeptide mapping and compared. At least seven phosphopeptides co-migrated, indicating the direct phosphorylation of PLD2 by PKC delta inside the cells. Immunocytochemical studies of PC12 cells revealed that after treatment with PMA, PKC delta was translocated from the cytosol to the plasma membrane where PLD2 is mainly localized. These results suggest that PKC delta-dependent direct phosphorylation plays an important role in the regulation of PLD2 activity in PC12 cells.  相似文献   

19.
Lipids are well recognized ligands that bind to proteins in a specific manner and regulate their function. Most attention has been placed on the headgroup of phospholipids, and little is known about the role of the acyl chains in mediating any effects of lipids on proteins. In this report, free fatty acids (FFA) were found to bind and activate phospholipase C delta1(PLC delta1). The unsaturated FFA arachidonic acid (AA) and oleic acid were able to stimulate PLC delta1 up to 30-fold in a dose-dependent manner. The saturated FFA stearic acid and palmitic acid were less efficacious than unsaturated FFA, activating the enzyme up to 8-fold. The mechanism of activation appears to be due to a change in K(m) for substrate; 50 microM arachidonate reduced the K(m) for the soluble PLC substrate diC(4)PI from 1.7 +/- 0.6 mM to 0.24 +/- 0.04 mM (7-fold reduction). V(max) was not significantly altered. PLC delta1 bound to sucrose-loaded vesicles that contained AA in a concentration-dependent manner. A fragment of PLC delta1 that encompasses the EF-hand domain also bound to micelles containing AA using nondenaturing PAGE. This same fragment also inhibited AA activation of PLC delta1 in a competition assay. These results suggest that the function of the EF-hand domain of PLC delta1 is to bind lipid and to allosterically regulate catalysis. These results also suggest that esterified and nonesterified fatty acids can bind to and regulate protein function, identifying a functional role for hydrophobic interactions between lipids and proteins.  相似文献   

20.
Mammalian phosphoinositide-specific phospholipase C isoenzymes   总被引:4,自引:0,他引:4  
Procaryotic and eucaryotic cells have evolved multiple pathways for communication with their external environment. The inositol 1,4,5-trisphosphate/diacylglycerol second messenger system is an example of such a signal transduction pathway which is present in multicellular eucaryotic organisms. Binding of an agonist to a specific cell surface receptor promotes rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate. The pivotal enzyme for this second messenger system is phosphoinositide-specific phospholipase C which hydrolyzes phosphatidylinositol 4,5-bisphosphate to generate the two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol. Recently, much progress has been made in the purification, characterization and cDNA cloning of multiple PI-PLC isoenzymes. The results of the recent studies on phosphoinositide-specific phospholipase C are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号