首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1(+)CD11b(+) myeloid cells in the spleen and overall decreased CD4(+) and CD8(+) T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4(+) and CD8(+) T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.  相似文献   

2.
Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-??+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-??+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.  相似文献   

3.
Specialized immune cells that infiltrate the tumor microenvironment regulate the growth and survival of neoplasia.  Malignant cells must elude or subvert anti-tumor immune responses in order to survive and flourish. Tumors take advantage of a number of different mechanisms of immune “escape,” including the recruitment of tolerogenic DC, immunosuppressive regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSC) that inhibit cytotoxic anti-tumor responses. Conversely, anti-tumor effector immune cells can slow the growth and expansion of malignancies: immunostimulatory dendritic cells, natural killer cells which harbor innate anti-tumor immunity, and cytotoxic T cells all can participate in tumor suppression. The balance between pro- and anti-tumor leukocytes ultimately determines the behavior and fate of transformed cells; a multitude of human clinical studies have borne this out. Thus, detailed analysis of leukocyte subsets within the tumor microenvironment has become increasingly important. Here, we describe a method for analyzing infiltrating leukocyte subsets present in the tumor microenvironment in a mouse tumor model. Mouse B16 melanoma tumor cells were inoculated subcutaneously in C57BL/6 mice. At a specified time, tumors and surrounding skin were resected en bloc and processed into single cell suspensions, which were then stained for multi-color flow cytometry. Using a variety of leukocyte subset markers, we were able to compare the relative percentages of infiltrating leukocyte subsets between control and chemerin-expressing tumors. Investigators may use such a tool to study the immune presence in the tumor microenvironment and when combined with traditional caliper size measurements of tumor growth, will potentially allow them to elucidate the impact of changes in immune composition on tumor growth. Such a technique can be applied to any tumor model in which the tumor and its microenvironment can be resected and processed.  相似文献   

4.
Tumor-specific Ags are potential target molecules in the therapeutic treatment of cancer. One way to elicit potent immune responses against these Ags is to use recombinant viruses, which activate both the innate and the adaptive arms of the immune system. In this study, we have compared Semliki Forest virus (SFV), adenovirus, and ALVAC (poxvirus) vectors for their capacity to induce CD8(+) T cell responses against the P1A tumor Ag and to elicit protection against subsequent challenge injection of P1A-expressing P815 tumor cells in DBA/2 mice. Both homologous and heterologous prime-boost regimens were studied. In most cases, both higher CD8(+) T cell responses and better tumor protections were observed in mice immunized with heterologous prime-boost regimens, suggesting that the combination of different viral vectors is beneficial for the induction of an effective immune response. However, homologous immunization with SFV provided potent tumor protection despite a rather moderate primary CD8(+) T cell response as compared with mice immunized with recombinant adenovirus. SFV-immunized mice showed a rapid and more extensive expansion of P1A-specific CD8(+) T cells in the tumor-draining lymph node after tumor challenge and had a higher frequency of CD62L(+) P1A-specific T cells in the blood, spleen, and lymph nodes as compared with adenoimmunized mice. Our results indicate that not only the magnitude but in particular the quality of the CD8(+) T cell response correlates with tumor protection.  相似文献   

5.

Background

To date, pathological examination of specimens remains largely qualitative. Quantitative measures of tissue spatial features are generally not captured. To gain additional mechanistic and prognostic insights, a need for quantitative architectural analysis arises in studying immune cell-cancer interactions within the tumor microenvironment and tumor-draining lymph nodes (TDLNs).

Methodology/Principal Findings

We present a novel, quantitative image analysis approach incorporating 1) multi-color tissue staining, 2) high-resolution, automated whole-section imaging, 3) custom image analysis software that identifies cell types and locations, and 4) spatial statistical analysis. As a proof of concept, we applied this approach to study the architectural patterns of T and B cells within tumor-draining lymph nodes from breast cancer patients versus healthy lymph nodes. We found that the spatial grouping patterns of T and B cells differed between healthy and breast cancer lymph nodes, and this could be attributed to the lack of B cell localization in the extrafollicular region of the TDLNs.

Conclusions/Significance

Our integrative approach has made quantitative analysis of complex visual data possible. Our results highlight spatial alterations of immune cells within lymph nodes from breast cancer patients as an independent variable from numerical changes. This opens up new areas of investigations in research and medicine. Future application of this approach will lead to a better understanding of immune changes in the tumor microenvironment and TDLNs, and how they affect clinical outcomes.  相似文献   

6.
Immunotherapy of cancer is attractive because of its potential for specificity and limited side effects. The efficacy of this approach may be improved by providing adjuvant signals and an inflammatory environment for immune cell activation. We evaluated antitumor immune responses in mice after treatment of OVA-expressing B16-F0 tumors with single (15 Gy) or fractionated (5 x 3 Gy) doses of localized ionizing radiation. Irradiated mice had cells with greater capability to present tumor Ags and specific T cells that secreted IFN-gamma upon peptide stimulation within tumor-draining lymph nodes than nonirradiated mice. Immune activation in tumor-draining lymph nodes correlated with an increase in the number of CD45(+) cells infiltrating single dose irradiated tumors compared with nonirradiated mice. Similarly, irradiated mice had increased numbers of tumor-infiltrating lymphocytes that secreted IFN-gamma and lysed tumor cell targets. Peptide-specific IFN-gamma responses were directed against both the class I and class II MHC-restricted OVA peptides OVA(257-264) and OVA(323-339), respectively, as well as the endogenous class I MHC-restricted B16 tumor peptide tyrosinase-related protein 2(180-188). Adoptive transfer studies indicated that the increased numbers of tumor Ag-specific immune cells within irradiated tumors were most likely due to enhanced trafficking of these cells to the tumor site. Together these results suggest that localized radiation can increase both the generation of antitumor immune effector cells and their trafficking to the tumor site.  相似文献   

7.
Mycobacteria and their cell wall components have been used with varying degrees of success to treat tumors, and Mycobacterium bovis BCG remains in use as a standard treatment for superficial bladder cancer. Mycobacterial immunotherapy is very effective in eliciting local immune responses against solid tumors when administered topically; however, its effectiveness in eliciting adaptive immune responses has been variable. Using a subcutaneous mouse thymoma model, we investigated whether immunotherapy with Mycobacterium smegmatis, a fast-growing mycobacterium of low pathogenicity, induces a systemic adaptive immune response. We found that M. smegmatis delivered adjacent to the tumor site elicited a systemic anti-tumor immune response that was primarily mediated by CD8+ T cells. Of note, we identified a CD11c+CD40intCD11bhiGr-1+ inflammatory DC population in the tumor-draining lymph nodes that was found only in mice treated with M. smegmatis. Our data suggest that, rather than rescuing the function of the DC already present in the tumor and/or tumor-draining lymph node, M. smegmatis treatment may promote anti-tumor immune responses by inducing the involvement of a new population of inflammatory cells with intact function.  相似文献   

8.
Metabolic disorders and abnormal immune function changes occur in tumor tissues and cells to varying degrees. There is increasing evidence that reprogrammed energy metabolism contributes to the development of tumor suppressive immune microenvironment and influences the course of gastric cancer (GC). Current studies have found that tumor microenvironment (TME) also has important clinicopathological significance in predicting prognosis and therapeutic efficacy. Novel approaches targeting TME therapy, such as immune checkpoint blockade (ICB), metabolic inhibitors and key enzymes of immune metabolism, have been involved in the treatment of GC. However, the interaction between GC cells metabolism and immune metabolism and how to make better use of these immunotherapy methods in the complex TME in GC are still being explored. Here, we discuss how metabolic reprogramming of GC cells and immune cells involved in GC immune responses modulate anti-tumor immune responses, as well as the effects of gastrointestinal flora in TME and GC. It is also proposed how to enhance anti-tumor immune response by understanding the targeted metabolism of these metabolic reprogramming to provide direction for the treatment and prognosis of GC.Subject terms: Cancer, Mechanisms of disease  相似文献   

9.
Substantial evidence indicates that immune activation at stroma can be rerouted in a tumor-promoting direction. CD69 is an immunoregulatory molecule expressed by early-activated leukocytes at sites of chronic inflammation, and CD69(+) T cells have been found to promote human tumor progression. In this study, we showed that, upon encountering autologous CD69(+) T cells, tumor macrophages (MΦs) acquired the ability to produce much greater amounts of IDO protein in cancer nests. The T cells isolated from the hepatocellular carcinoma tissues expressed significantly more CD69 molecules than did those on paired circulating and nontumor-infiltrating T cells; these tumor-derived CD69(+) T cells could induce considerable IDO in monocytes. Interestingly, the tumor-associated monocytes/MΦs isolated from hepatocellular carcinoma tissues or generated by in vitro culture effectively activated circulating T cells to express CD69. IL-12 derived from tumor MΦs was required for early T cell activation and subsequent IDO expression. Moreover, we found that conditioned medium from IDO(+) MΦs effectively suppressed T cell responses in vitro, an effect that could be reversed by adding extrinsic IDO substrate tryptophan or by pretreating MΦs with an IDO inhibitor 1-methyl-DL-tryptophan. These data revealed a fine-tuned collaborative action between different types of immune cells to counteract T cell responses in tumor microenvironment. Such an active induction of immune tolerance should be considered for the rational design of effective immune-based anticancer therapies.  相似文献   

10.
The presence or absence of CD4(+) T cell help can determine the direction of adaptive immune responses toward either cross-priming or cross-tolerance. It has been demonstrated that interactions of CD40-CD40 ligand can replace CD4(+) T cell help and enable dendritic cells to prime cytotoxic T cells. Here, we demonstrate that antitumor reactivity induced in regional lymph nodes (LNs) by s.c. injection of CD40 ligand (CD40L)-transduced tumor (MCA205 CD40L) showed far superior therapeutic efficacy against established brain tumors of a weakly immunogenic fibrosarcoma, MCA205, when adoptively transferred. Coinjection of apoptotic, but not necrotic parental tumor cells with CD40L-expressing tumor cells caused a strong synergistic induction of antitumor reactivity in tumor-draining LNs. Freshly isolated T cells from LNs immunized with apoptotic parental tumor cells and MCA205 CD40L were capable of mediating regression of the parental tumor in vivo. In contrast, T cells derived from LNs immunized without MCA205 CD40L required ex vivo anti-CD3/IL-2 activation to elicit therapeutic activity. On anti-CD3/IL-2 activation, cells from LNs immunized with MCA205 CD40L exhibited superior per cell antitumor reactivity. An in vitro depletion study revealed that either CD4(+) or CD8(+) T cells could mediate therapeutic efficacy but that the antitumor efficacy mediated by CD4(+) T cells was far superior. Cytosolic flow cytometric analyses indicated that priming of CD4(+) cells in LNs draining CD40L-expressing tumors was polarized to the Th1 type. This is the first report that fully potent antitumor CD4(+) T cell priming was promoted by s.c. injection of CD40L-transduced tumor in the presence of apoptotic tumor cells.  相似文献   

11.
The propagation of mucosal tolerance as a therapeutic approach in autoimmune diseases remains a difficult goal to achieve, and therefore further mechanistic studies are necessary to develop potential clinical protocols to induce mucosal regulatory T cells (Tr cells). In this study we addressed whether oral or nasal proteoglycan induced functional Tr cells in the cartilage proteoglycan-induced chronic arthritis model. Both nasal and oral application of human proteoglycan before induction of disease suppressed arthritis severity and incidence. Tolerized mice showed enhanced numbers of IL-10 producing CD4(+) cells in the paw-draining lymph nodes. Furthermore, CD4(+) spleen cells displayed enhanced expression of molecules associated with Tr cells, such as IL-10, Foxp3, and TGF-beta. Transfer of CD4(+) spleen cells from mucosally tolerized donors into proteoglycan-immunized mice abolished arthritis and reduced humoral responses, indicative of Tr cells with the capacity to inhibit already induced immune responses. Tr cells were activated upon transfer, because enhanced proliferation was observed in the joint draining lymph nodes compared with activated T cells from nontolerized donors. Upon cotransfer with naive proteoglycan-specific T cells, mucosally induced Tr cells inhibited proliferation of these arthritogenic T cells in vivo. Herein we show that both oral and nasal Ag application induced Tr cells, which had a direct inhibitory effect on already established pathogenic B and T cell responses.  相似文献   

12.
We have previously demonstrated that the oral administration of guinea pig myelin basic protein (MBP) protects Lewis rats against the induction of experimental autoimmune encephalomyelitis (EAE) when subsequently immunized with guinea pig MBP in CFA. In addition, animals made orally tolerant to MBP also have diminished proliferative and antibody responses to MBP, but not to other Ag. Nonetheless, the mechanism of oral tolerance to MBP in the EAE model remains undefined. In the present study, we report that T cells isolated from the spleen and mesenteric lymph nodes of MBP orally tolerized animals can adoptively transfer protection against EAE. Furthermore, these T cells are of the CD8+ subclass. In addition, CD8+ T cells from MBP orally tolerized animals also suppress in vitro proliferative responses and antibody responses to MBP in an Ag-specific fashion. These results demonstrate that active cellular mechanisms are initiated after oral administration of an autoantigen that can down-regulate an experimental autoimmune disease and provide the basis for the isolation and characterization of the cells mediating both in vivo and in vitro suppression.  相似文献   

13.

Background

The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses.

Methods and Findings

The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL) from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations.

Conclusion

IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.  相似文献   

14.
We recently reported that the CD4(+) T cell subset with low L-selectin expression (CD62L(low)) in tumor-draining lymph nodes (TDLN) can be culture activated and adoptively transferred to eradicate established pulmonary and intracranial tumors in syngeneic mice, even without coadministration of IL-2. We have extended these studies to characterize the small subset of L-selectin(low) CD8(+) T cells naturally present in TDLN of mice bearing weakly immunogenic tumors. Isolated L-selectin(low) CD8(+) T cells displayed the functional phenotype of helper-independent T cells, and when adoptively transferred could consistently eradicate, like L-selectin(low) CD4(+) T cells, both established pulmonary and intracranial tumors without coadministration of exogenous IL-2. Whereas adoptively transferred L-selectin(low) CD4(+) T cells were more potent on a cell number basis for eradicating 3-day intracranial and s.c. tumors, L-selectin(low) CD8(+) T cells were more potent against advanced (10-day) pulmonary metastases. Although the presence of CD4(+) T cells enhanced generation of L-selectin(low) CD8(+) effector T cells, the latter could also be obtained from CD4 knockout mice or normal mice in vivo depleted of CD4(+) T cells before tumor sensitization. Culture-activated L-selectin(low) CD8(+) T cells did not lyse relevant tumor targets in vitro, but secreted IFN-gamma and GM-CSF when specifically stimulated with relevant tumor preparations. These data indicate that even without specific vaccine maneuvers, progressive tumor growth leads to independent sensitization of both CD4(+) and CD8(+) anti-tumor T cells in TDLN, phenotypically L-selectin(low) at the time of harvest, each of which requires only culture activation to unmask highly potent stand-alone effector function.  相似文献   

15.
Traditional wisdom holds that intact immune responses, such as immune surveillance or immunoediting, are required for preventing and inhibiting tumor development; but recent evidence has also indicated that unresolved immune responses, such as chronic inflammation, can promote the growth and progression of cancer. Within the immune system, cytotoxic CD8(+) and CD4(+) Th1 T cells, along with their characteristically produced cytokine IFN-γ, function as the major anti-tumor immune effector cells, whereas tumor associated macrophages (TAM) or myeloid-derived suppressive cells (MDSC) and their derived cytokines IL-6, TNF, IL-1β and IL-23 are generally recognized as dominant tumor-promoting forces. However, the roles played by Th17 cells, CD4(+) CD25(+) Foxp3(+) regulatory T lymphocytes and immunoregulatory cytokines such as TGF-β in tumor development and survival remain elusive. These immune cells and the cellular factors produced from them, including both immunosuppressive and inflammatory cytokines, play dual roles in promoting or discouraging cancer development, and their ultimate role in cancer progression may rely heavily on the tumor microenvironment and the events leading to initial propagation of carcinogenesis.  相似文献   

16.
Grm1-transgenic mice spontaneously develop cutaneous melanoma. This model allowed us to scrutinize the generic immune responses over the course of melanoma development. To this end, lymphocytes obtained from spleens, unrelated lymph nodes and tumor-draining lymph nodes of mice with no evidence of disease, and low or high tumor burden were analyzed ex vivo and in vitro. Thereby, we could demonstrate an increase in the number of activated CD4+ and CD8+ lymphocytes in the respective organs with increasing tumor burden. However, mainly CD4+ T cells, which could constitute both T helper as well as immunosuppressive regulatory T cells, but not CD8+ T cells, expressed activation markers upon in vitro stimulation when obtained from tumor-bearing mice. Interestingly, these cells from tumor-burdened animals were also functionally hampered in their proliferative response even when subjected to strong in vitro stimulation. Further analyses revealed that the increased frequency of regulatory T cells in tumor-bearing mice is an early event present in all lymphoid organs. Additionally, expression of the immunosuppressive cytokines TGF-??1 and IL-10 became more evident with increased tumor burden. Notably, TGF-??1 is strongly expressed in both the tumor and the tumor-draining lymph node, whereas IL-10 expression is more pronounced in the lymph node, suggesting a more complex regulation of IL-10. Thus, similar to the situation in melanoma patients, both cytokines as well as cellular immune escape mechanisms seem to contribute to the observed immunosuppressed state of tumor-bearing grm1-transgenic mice, suggesting that this model is suitable for preclinical testing of immunomodulatory therapeutics.  相似文献   

17.
Cancer patients mount adaptive immune responses against their tumors. However, tumor develops many mechanisms to evade effective immunosurveillance. T-cell death caused by tumor plays a critical role in establishing tumor immunotolerance. Chronic stimulation of T cells by tumors leads to activation-induced cell death. Abortive stimulation of T cells by tolerogenic antigen-presenting cells loaded with tumor antigens leads to autonomous death of tumor-specific T cells. Therapeutic approaches that prevent T-cell death in the tumor microenvironment and tumor draining lymph nodes, therefore, should boost adaptive immune responses against cancer.  相似文献   

18.
The identification of tumor antigens capable of eliciting an immune response in vivo may be an effective method to identify therapeutic cancer targets. We have developed a method to identify such antigens using frozen tumor-draining lymph node samples from breast cancer patients. Immune responses in tumor-draining lymph nodes were identified by immunostaining lymph node sections for B-cell markers (CD20&CD23) and Ki67 which revealed cell proliferation in germinal center zones. Antigen-dependent somatic hypermutation (SH) and clonal expansion (CE) were present in heavy chain variable (VH) domain cDNA clones obtained from these germinal centers, but not from Ki67 negative germinal centers. Recombinant VH single-domain antibodies were used to screen tumor proteins and affinity select potential tumor antigens. Neuroplastin (NPTN) was identified as a candidate breast tumor antigen using proteomic identification of affinity selected tumor proteins with a recombinant VH single chain antibody. NPTN was found to be highly expressed in approximately 20% of invasive breast carcinomas and 50% of breast carcinomas with distal metastasis using a breast cancer tissue array. Additionally, NPTN over-expression in a breast cancer cell line resulted in a significant increase in tumor growth and angiogenesis in vivo which was related to increased VEGF production in the transfected cells. These results validate NPTN as a tumor-associated antigen which could promote breast tumor growth and metastasis if aberrantly expressed. These studies also demonstrate that humoral immune responses in tumor-draining lymph nodes can provide antibody reagents useful in identifying tumor antigens with applications for biomarker screening, diagnostics and therapeutic interventions.  相似文献   

19.
BACKGROUND: Transplantable B16 melanoma is widely used as a tumor model to investigate tumor immunity. We wished to characterize the leukocyte populations infiltrating B16 melanoma tumors, and the functional properties of tumor-infiltrating dendritic cells (TIDC). MATERIALS AND METHODS: We used the B16 melanoma cell line expressing ovalbumin protein (OVA) to investigate the phenotype and T cell stimulatory capacity of TIDC. RESULTS: The majority of leukocytes in B16 melanoma were macrophages, which colocalized with TIDCs, B and T cells to the peripheral area of the tumor. Both myeloid and plasmacytoid DC populations were present within tumors. Most of these DCs appeared immature, but about a third expressed a mature phenotype. TIDCs did not present tumor-derived antigen, as they were unable to induce the proliferation of tumor-specific CD4+ and CD8+ T cells in vitro unless in the presence of specific peptides. Some presentation of tumor-derived antigen could be demonstrated in the tumor-draining lymph node using in vivo proliferation assays. However, while proliferation of CD8+ T cells was reproducibly demonstrated, no proliferation of CD4+ T cells was observed. CONCLUSION: In summary, our data suggest that DCs in tumors have limited antigen-presenting function. Inefficient antigen presentation extends to the tumor-draining lymph node, and may affect the generation of antitumor immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号