首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SWI/SNF regulates growth control, differentiation and tumor suppression, yet few direct targets of this chromatin-remodeling complex have been identified in mammalian cells. We report that SWI/SNF is required for interferon (IFN)-gamma induction of CIITA, the master regulator of major histocompatibility complex class II expression. Despite the presence of functional STAT1, IRF-1 and USF-1, activators implicated in CIITA expression, IFN-gamma did not induce CIITA in cells lacking BRG1 and hBRM, the ATPase subunits of SWI/SNF. Reconstitution with BRG1, but not an ATPase-deficient version of this protein (K798R), rescued CIITA induction, and enhanced the rate of induction of the IFN-gamma-responsive GBP-1 gene. Not ably, BRG1 inhibited the CIITA promoter in transient transfection assays, underscoring the importance of an appropriate chromosomal environment. Chromatin immunoprecipitation revealed that BRG1 interacts directly with the endogenous CIITA promoter in an IFN-gamma-inducible fashion, while in vivo DNase I footprinting and restriction enzyme accessibility assays showed that chromatin remodeling at this locus requires functional BRG1. These data provide the first link between a cytokine pathway and SWI/SNF, and suggest a novel role for this chromatin-remodeling complex in immune surveillance.  相似文献   

2.
3.
Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.  相似文献   

4.
Summary Two new polymorphisms within the human parathyroid hormone (PTH) gene are described. One corresponds to a CA transversion that destroys DraII and NlaIV restriction sites. The other is revealed by the enzyme XmnI, and its position has been mapped with respect to the PTH gene. We have also identified a sequence change that results in the TaqI restriction fragment length polymorphism (RFLP) described previously at this locus and have found that this sequence change also results in disruption of a BstBI site. Finally, we describe a polymerase chain reaction (PCR)-based method that permits a rapid evaluation of the DraII and BstBI (TaqI) polymorphisms. The introduction of these two additional RFLPs and this PCR-based assay should considerably extend the power of genetic analyses of the human PTH gene.  相似文献   

5.
6.
7.
8.
The DYRKs (dual specificity tyrosine phosphorylation-regulated kinases) are a conserved family of protein kinases that autophosphorylate a tyrosine residue in their activation loop by an intra-molecular mechanism and phosphorylate exogenous substrates on serine/threonine residues. Little is known about the identity of true substrates for DYRK family members and their binding partners. To address this question, we used full-length dDYRK2 (Drosophila DYRK2) as bait in a yeast two-hybrid screen of a Drosophila embryo cDNA library. Of 14 independent dDYRK2 interacting clones identified, three were derived from the chromatin remodelling factor, SNR1 (Snf5-related 1), and three from the essential chromatin component, TRX (trithorax). The association of dDYRK2 with SNR1 and TRX was confirmed by co-immunoprecipitation studies. Deletion analysis showed that the C-terminus of dDYRK2 modulated the interaction with SNR1 and TRX. DYRK family member MNB (Minibrain) was also found to co-precipitate with SNR1 and TRX, associations that did not require the C-terminus of the molecule. dDYRK2 and MNB were also found to phosphorylate SNR1 at Thr102 in vitro and in vivo. This phosphorylation required the highly conserved DH-box (DYRK homology box) of dDYRK2, whereas the DH-box was not essential for phosphorylation by MNB. This is the first instance of phosphorylation of SNR1 or any of its homologues and implicates the DYRK family of kinases with a role in chromatin remodelling.  相似文献   

9.
10.
11.
12.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

13.
Characterization of two new alleles at the goat CSN1S2 locus   总被引:5,自引:0,他引:5  
Two novel alleles at the goat CSN1S2 locus have been identified: CSN1S2(F) and CSN1S2(D). Sequence analyses revealed that the CSN1S2(F) allele is characterized by a G --> A transition at the 13th nucleotide in exon 3 changing the seventh amino acid of the mature protein from Val to Ile. The CSN1S2(D) allele, apparently associated with a decreased synthesis of alpha s2-casein, is characterized by a 106-bp deletion, involving the last 11 bp of the exon 11 and the first 95 bp of the following intron. Methods (PCR-RFLP and PCR) for identification of carriers of these alleles have been developed.  相似文献   

14.
15.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Galpha protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Galpha are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (beta2-beta3, alpha2-beta4, alpha3-beta5, and alpha4-beta6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gbetagamma. However, the constitutive activity caused by the F344C and E335C mutations in the alpha2-beta4 loop and F378C in the alpha3-beta5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gbetagamma. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the beta2-beta3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Galpha contribute to activation of signaling.  相似文献   

16.
17.
18.
19.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Gα protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Gα are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (β2–β3, α2–β4, α3–β5, and α4–β6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gβγ. However, the constitutive activity caused by the F344C and E335C mutations in the α2–β4 loop and F378C in the α3–β5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gβγ. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the β2–β3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Gα contribute to activation of signaling.  相似文献   

20.
Background: The incidence of breast cancer has been on the rise in Malaysia. It is suggested that a subset of breast cancer cases were associated with germline mutation in breast cancer susceptibility (BRCA) genes. Most of the BRCA mutations reported in Malaysia were point mutations, small deletions and insertions. Here we report the first study of BRCA large genomic rearrangements (LGRs) in Malaysia. We aimed to detect the presence of LGRs in the BRCA genes of Malaysian patients with breast cancer. Methods: Multiplex ligation-dependent probe amplification (MLPA) for BRCA LGRs was carried out on 100 patients (60 were high-risk breast cancer patients previously tested negative/positive for BRCA1 and BRCA2 mutations, and 40 were sporadic breast cancer patients), recruited from three major referral centres, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Hospital Kuala Lumpur (HKL) and Hospital Putrajaya (HPJ). Results: Two novel BRCA1 rearrangements were detected in patients with sporadic breast cancer; both results were confirmed by quantitative PCR. No LGRs were found in patients with high-risk breast cancer. The two large genomic rearrangements detected were genomic amplifications of exon 3 and exon 10. No BRCA2 genomic rearrangement was found in both high-risk and sporadic breast cancer patients. Conclusion: These results will be helpful to understand the mutation spectrum of BRCA1 and BRCA2 genes in Malaysian patients with breast cancer. Further studies involving larger samples are required to establish a genetic screening strategy for both high-risk and sporadic breast cancer patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号