首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy is clinically characterized by the early involvement of distal leg muscles. The striking pathological features of the myopathy are muscle fibers with rimmed vacuoles. To date, the role of aquaporin-4 water channel in distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy has not been studied. CASE PRESENTATION: Here, we studied the expression of aquaporin-4 in muscle fibers of a patient with distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy. Immunohistochemical and immunofluorescence analyses showed that sarcolemmal aquaporin-4 immunoreactivity was reduced in many muscle fibers of the patent. However, the intensity of aquaporin-4 staining was markedly increased at rimmed vacuoles or its surrounding areas and in some muscle fibers. The fast-twitch type 2 fibers were predominantly involved with the strong aquaporin-4-positive rimmed vacuoles and TAR-DNA-binding protein-43 aggregations. Rimmed vacuoles with strong aquaporin-4 expression seen in the distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy patient were not found in control muscles without evidence of neuromuscular disorders and the other disease-controls. CONCLUSIONS: Aquaporin-4 might be crucial in determining the survival or degeneration of fast-twitch type 2 fibers in distal myopathy with rimmed vacuoles/hereditary inclusion body myopathy.  相似文献   

2.
Distal myopathy with rimmed vacuoles (DMRV) or hereditary inclusion body myopathy (hIBM) is an autosomal recessive disorder clinically characterized by weakness that initially involves the distal muscles, although other muscles can be affected as well. Pathological hallmarks include the presence of rimmed vacuoles (RVs) and intracellular Congo red-positive depositions in vacuolated or nonvacuolated fibers. Mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes the rate-limiting enzyme in sialic acid biosynthesis, are causative of DMRV/hIBM. Recently, we have generated a mouse model (Gne(-/-)hGNEV572L-Tg) for this disease, and have shown that these mice exhibit hyposialylation and intracellular amyloid deposition before the characteristic RVs are detected, indicating that autophagy is a downstream phenomenon to hyposialylation and amyloid deposition in DMRV/hIBM.  相似文献   

3.
Petrov A  Laoudj D  Vasetskiĭ E 《Genetika》2003,39(2):202-206
Landouzy-Dejerine muscular dystrophy is a rare hereditary disease with prevalence of 0.9 to 1.4 in 100,000. Clinically the disease is characterized by weakness and atrophy of the facial and shoulder girdle muscles. It is caused by partial deletion of the 3.3-kb subtelomeric D4Z4 repeat on chromosome 4 (locus 4q35). This paper presents a critical review of the literature data and hypotheses explaining molecular mechanisms of progressive fascioscapulohumeral muscular dystrophy.  相似文献   

4.
The nemaline myopathies are characterized by weakness and eosinophilic, rodlike (nemaline) inclusions in muscle fibers. Amish nemaline myopathy is a form of nemaline myopathy common among the Old Order Amish. In the first months of life, affected infants have tremors with hypotonia and mild contractures of the shoulders and hips. Progressive worsening of the proximal contractures, weakness, and a pectus carinatum deformity develop before the children die of respiratory insufficiency, usually in the second year. The disorder has an incidence of approximately 1 in 500 among the Amish, and it is inherited in an autosomal recessive pattern. Using a genealogy database, automated pedigree software, and linkage analysis of DNA samples from four sibships, we identified an approximately 2-cM interval on chromosome 19q13.4 that was homozygous in all affected individuals. The gene for the sarcomeric thin-filament protein, slow skeletal muscle troponin T (TNNT1), maps to this interval and was sequenced. We identified a stop codon in exon 11, predicted to truncate the protein at amino acid 179, which segregates with the disease. We conclude that Amish nemaline myopathy is a distinct, heritable, myopathic disorder caused by a mutation in TNNT1.  相似文献   

5.
Landouzy–Dejerine muscular dystrophy is a rare hereditary disease with prevalence of 0.9 to 1.4 in 100000. Clinically the disease is characterized by weakness and atrophy of the facial and shoulder girdle muscles. It is caused by partial deletion of the 3.3-kb subtelomeric D4Z4 repeat on chromosome 4 (locus 4q35). This paper presents a critical review of the literature data and hypotheses explaining molecular mechanisms of progressive fascioscapulohumeral muscular dystrophy.  相似文献   

6.
Hereditary inclusion body myopathy (HIBM) is a unique muscular disorder caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. GNE encodes a bi-functional enzyme acting in the biosynthetic pathway of sialic acid. Since the underlying myopathological mechanism leading to the disease phenotype is poorly understood, we have established human myoblasts cultures, derived from HIBM satellite cells carrying the homozygous M712T mutation, and identified cellular and molecular characteristics of these cells. HIBM and control myoblasts showed similar heterogeneous patterns of proliferation and differentiation. Upon apoptosis induction, phosphatidylserine externalization was similar in HIBM and controls. In contrast, the active forms of caspase-3 and -9 were strongly enhanced in most HIBM cultures compared to controls, while pAkt, downregulated in controls, remained high in HIBM cells. These results could indicate impaired apoptotic signaling in HIBM cells. Since satellite cells enable partial regeneration of the post-mitotic muscle tissue, these altered processes could contribute to the muscle mass loss seen in patients. The identification of survival defects in HIBM affected muscle cells could disclose new functions for GNE in muscle cells.  相似文献   

7.
Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, quadriceps sparing type commonly referred to as HIBM but also termed h-IBM or Inclusion Body Myopathy 2 (IBM2). The clinical manifestations begin with muscle weakness progressing over the next 10–20 years uniquely sparing the quadriceps until the most advanced stage of the disease. Histopathology of an HIBM muscle biopsy shows rimmed vacuoles on Gomori's trichrome stain, small fibers in groups and tubulofilaments without evidence of inflammation. In affected individuals distinct mutations have been identified in the GNE gene, which encodes the bifunctional enzyme uridine diphospho-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase/N-acetyl-mannosamine (ManNAc) kinase (GNE/MNK). GNE/MNK catalyzes the first two committed steps in the biosynthesis of acetylneuraminic acid (Neu5Ac), an abundant and functionally important sugar. The generation of HIBM animal models has led to novel insights into both the disease and the role of GNE/MNK in pathophysiology. Recent advances in therapeutic approaches for HIBM, including administration of N-acetyl-mannosamine (ManNAc), a precursor of Neu5Ac will be discussed.  相似文献   

8.
Hereditary inclusion body myopathy (HIBM) is a unique group of neuromuscular disorders characterized by adult-onset, slowly progressive distal and proximal muscle weakness, which is caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme in the biosynthetic pathway of sialic acid. In order to investigate the consequences of the mutated GNE enzyme in muscle cells, we have established cell cultures from muscle biopsies carrying either kinase or epimerase mutations. While all myoblasts carrying a mutated GNE gene show a reduction in their epimerase activity, only the cells derived from the patient carrying a homozygous epimerase mutation present also a significant reduction in the overall membrane bound sialic acid. These results indicate that although mutations in each of the two GNE domains result in an impaired enzymatic activity and the same HIBM phenotype, they do not equally affect the overall sialylation of muscle cells. This lack of correlation suggests that the pathological mechanism of the disease may not be linked solely to the well-characterized sialic acid pathway.  相似文献   

9.
The bifunctional enzyme UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) is essential for early embryonic development and catalyzes the rate limiting step in sialic acid biosynthesis. Although epimerase and kinase activities have been attributed to GNE, little is known about the regulation, differential expression, and subcellular localization of GNE in vivo. Mutations in GNE cause a rare inherited muscle disorder in humans called hereditary inclusion body myopathy (HIBM). However, the role of GNE in HIBM pathogenesis has not been defined yet. Here, we show that the GNE protein is expressed in various mammalian cells and tissues with highest levels found in cancer cells and liver. In human skeletal muscle, GNE protein is developmentally regulated: high levels are found in immature myoblasts but low levels in mature skeletal muscle. The GNE protein colocalizes with resident proteins of the Golgi compartment in a variety of human cells including muscle. Drug-induced disruption of the Golgi and subsequent recovery reveals co-distribution of GNE along with Golgi-targeted proteins. This subcellular localization of GNE is in good agreement with its established role as the key enzyme of sialic acid biosynthesis, since the sialylation of glycoconjugates takes place in the Golgi complex. Surprisingly, GNE is also detected in the nucleus. Upon nocodazole treatment, GNE redistributes to the cytoplasm suggesting that GNE may act as a nucleocytoplasmic shuttling protein. A regulatory role for GNE shifting between the nuclear and the Golgi compartment is proposed. Further insight into GNE regulation may promote the understanding of HIBM pathogenesis.  相似文献   

10.
Hereditary inclusion body myopathy (HIBM) is an adult onset, slowly progressive distal and proximal myopathy. Although the causing gene, GNE, encodes for a key enzyme in the biosynthesis of sialic acid, its primary function in HIBM remains unknown. The goal of this study was to unravel new clues on the biological pathways leading to HIBM by proteomic comparison. Muscle cultures and biopsies were analyzed by two dimensional gel electrophoresis (2-DE) and the same biopsy extracts by isobaric tag for relative and absolute quantitation (iTRAQ). Proteins that were differentially expressed in all HIBM specimens versus all controls in each analysis were identified by mass spectrometry. The muscle cultures 2-DE analysis yielded 41 such proteins, while the biopsies 2-DE analysis showed 26 differentially expressed proteins. Out of the 400 proteins identified in biopsies by iTRAQ, 41 showed altered expression. In spite of the different nature of specimens (muscle primary cultures versus muscle biopsies) and of the different methods applied (2D gels versus iTRAQ) the differentially expressed proteins identified in each of the three analyses where related mainly to the same pathways, ubiquitination, stress response and mitochondrial processes, but the most robust cluster (30%) was assigned to cytoskeleton and sarcomere organization. Taken together, these findings indicate a possible novel function of GNE in the muscle filamentous apparatus that could be involved in the pathogenesis of HIBM.  相似文献   

11.
We recently described an autosomal dominant inclusion-body myopathy characterized by congenital joint contractures, external ophthalmoplegia, and predominantly proximal muscle weakness. A whole-genome scan, performed with 161 polymorphic markers and with DNA from 40 members of one family, indicated strong linkage for markers on chromosome 17p. After analyses with additional markers in the region and with DNA from eight additional family members, a maximum LOD score (Zmax) was detected for marker D17S1303 (Zmax=7.38; recombination fraction (theta)=0). Haplotype analyses showed that the locus (Genome Database locus name: IBM3) is flanked distally by marker D17S945 and proximally by marker D17S969. The positions of cytogenetically localized flanking markers suggest that the location of the IBM3 gene is in chromosome region 17p13.1. Radiation hybrid mapping showed that IBM3 is located in a 2-Mb chromosomal region and that the myosin heavy-chain (MHC) gene cluster, consisting of at least six genes, co-localizes to the same region. This localization raises the possibility that one of the MHC genes clustered in this region may be involved in this disorder.  相似文献   

12.
Hereditary myosin myopathies are characterized by variable clinical features. Inclusion body myopathy 3 (IBM-3) is an autosomal dominant disease associated with a missense mutation (E706K) in the myosin heavy chain IIa gene. Adult patients experience progressive muscle weakness. Biopsies reveal dystrophic changes, rimmed vacuoles with cytoplasmic inclusions, and focal disorganization of myofilaments. We constructed a transgene encoding E706K myosin and expressed it in Drosophila (E701K) indirect flight and jump muscles to establish a novel homozygous organism with homogeneous populations of fast IBM-3 myosin and muscle fibers. Flight and jump abilities were severely reduced in homozygotes. ATPase and actin sliding velocity of the mutant myosin were depressed >80% compared with wild-type myosin. Light scattering experiments and electron microscopy revealed that mutant myosin heads bear a dramatic propensity to collapse and aggregate. Thus E706K (E701K) myosin appears far more labile than wild-type myosin. Furthermore, mutant fly fibers exhibit ultrastructural hallmarks seen in patients, including cytoplasmic inclusions containing aberrant proteinaceous structures and disorganized muscle filaments. Our Drosophila model reveals the unambiguous consequences of the IBM-3 lesion on fast muscle myosin and fibers. The abnormalities observed in myosin function and muscle ultrastructure likely contribute to muscle weakness observed in our flies and patients.  相似文献   

13.
《Autophagy》2013,9(4):396-398
Distal myopathy with rimmed vacuoles (DMRV) or hereditary inclusion body myopathy (hIBM) is an autosomal recessive disorder clinically characterized by weakness that initially involves the distal muscles, although other muscles can be affected as well. Pathological hallmarks include the presence of rimmed vacuoles (RVs) and intracellular Congo red-positive depositions in vacuolated or non-vacuolated fibers. Mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes the rate-limiting enzyme in sialic acid biosynthesis, are causative of DMRV/hIBM. Recently, we have generated a mouse model (Gne-/-hGNEV572L-Tg ) for this disease, and have shown that these mice exhibit hyposialylation and intracellular amyloid deposition before the characteristic RVs are detected, indicating that autophagy is a downstream phenomenon to hyposialylation and amyloid deposition in DMRV/hIBM.

Addendum to:

A Gne Knockout Mouse Expressing Human V572L Mutation Develops Features Similar to Distal Myopathy with Rimmed Vacuoles or Hereditary Inclusion Body Myopathy

M.C. Malicdan, S. Noguchi, I. Nonaka, Y.K. Hayashi and I. Nishino

Hum Mol Genet 2007; 16:115-28  相似文献   

14.
We have previously reported an autosomal recessive form of congenital muscular dystrophy, characterized by proximal girdle weakness, generalized muscle hypertrophy, rigidity of the spine, and contractures of the tendo Achilles, in a consanguineous family from the United Arab Emirates. Early respiratory failure resulting from severe diaphragmatic involvement was present. Intellect and the results of brain imaging were normal. Serum creatine kinase levels were grossly elevated, and muscle-biopsy samples showed dystrophic changes. The expression of the laminin-alpha2 chain of merosin was reduced on several fibers, but linkage analysis excluded the LAMA2 locus on chromosome 6q22-23. Here, we report the results of genomewide linkage analysis of this family, by use of homozygosity mapping. In all four affected children, an identical homozygous region was identified on chromosome 1q42, spanning 6-15 cM between flanking markers D1S2860 and D1S2800. We have identified a second German family with two affected children having similar clinical and histopathological features; they are consistent with linkage to the same locus. The cumulative LOD score was 3.57 (straight theta=.00) at marker D1S213. This represents a novel locus for congenital muscular dystrophy. We suggest calling this disorder "CMD1B." The expression of three functional candidate genes in the CMD1B critical region was investigated, and no detectable changes in their level of expression were observed. The secondary reduction in laminin-alpha2 chain in these families suggests that the primary genetic defect resides in a gene coding for a protein involved in basal lamina assembly.  相似文献   

15.
Benign hereditary chorea (BHC) is an autosomal dominant disorder characterized by an early-onset nonprogressive chorea. The early onset and the benign course distinguishes BHC from the more common Huntington disease (HD). Previous studies on families with BHC have shown that BHC and HD are not allelic. We studied a large Dutch kindred with BHC and obtained strong evidence for linkage between the disorder and markers on chromosome 14q (maximum LOD score 6.32 at recombination fraction 0). The BHC locus in this family was located between markers D14S49 and D14S1064, a region spanning approximately 20.6 cM that contains several interesting candidate genes involved in the development and/or maintenance of the CNS: glia maturation factor-beta, GTP cyclohydrolase 1 and the survival of motor neurons (SMN)-interacting protein 1. The mapping of the BHC locus to 14q is a first step toward identification of the gene involved, which might, subsequently, shed light on the pathogenesis of this and other choreatic disorders.  相似文献   

16.
Mutations in the key enzyme of sialic acid biosynthesis, UDP-N-acetylglucosamine 2-epimerase/N-acetyl-mannosamine kinase, result in distal myopathy with rimmed vacuoles (DMRV)/hereditary inclusion body myopathy (HIBM) in humans. Sialic acid is an acidic monosaccharide that modifies non-reducing terminal carbohydrate chains on glycoproteins and glycolipids, and it plays an important role in cellular adhesions and interactions. In this study, we generated mice with a V572L point mutation in the GNE kinase domain. Unexpectedly, these mutant mice had no apparent myopathies or motor dysfunctions. However, they had a short lifespan and exhibited renal impairment with massive albuminuria. Histological analysis showed enlarged glomeruli with mesangial matrix deposition, leading to glomerulosclerosis and abnormal podocyte foot process morphologies in the kidneys. Glycan analysis using several lectins revealed glomerular epithelial cell hyposialylation, particularly the hyposialylation of podocalyxin, which is one of important molecules for the glomerular filtration barrier. Administering Neu5Ac to the mutant mice from embryonic stages significantly suppressed the albuminuria and renal pathology, and partially recovered the glomerular glycoprotein sialylation. These findings suggest that the nephrotic-like syndrome observed in these mutant mice resulted from impaired glomerular filtration due to the hyposialylation of podocyte glycoproteins, including podocalyxin. Furthermore, it was possible to prevent the nephrotic-like disease in these mice by beginning Neu5Ac treatment during gestation.  相似文献   

17.
Capillary malformations (port-wine stains) are the most common vascular malformations occurring in 0.3% of live births. Most capillary malformations occur sporadically and present as a solitary lesion. Capillary malformations can also occur as a component of well-described syndromes. Familial occurrence of multiple capillary malformations has been described in the literature, suggesting autosomal dominant inheritance with variable expression in this subgroup. A hereditary basis underlying the development of solitary capillary malformations has not been found, but may well be possible. We have mapped a locus for an autosomal dominant disorder in a three-generation family that manifested itself with multiple cutaneous capillary malformations to chromosome 5q13-22. This locus spans 48 cM between the markers D5S647 and D5S659 and harbours several candidate genes. By defining the gene(s) responsible for capillary malformations, we will gain more insight in the pathogenesis of this disorder. It is likely that genes implicated in these familial cases may be involved in the more sporadic cases.  相似文献   

18.
Hereditary inclusion body myopathy (HIBM), a neuromuscular disorder, is caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis. To date, more than 40 different mutations in the GNE gene have been reported to cause the disease. Ten of them, representing mutations in both functional domains of GNE, were recombinantly expressed in insect cells (Sf9). Each of the mutants that was analyzed displayed a reduction in the two known GNE activities, thus revealing that mutations may also influence the function of the domain not harboring them. The extent of reduction strongly differs among the point mutants, ranging from only 20% reduction found for A631T and A631V to almost 80% reduction of at least one activity in D378Y and N519S mutants and more than 80% reduction of both activities of G576E, underlined by structural changes of N519S and G576E, as observed in CD spectroscopy and gel filtration analysis, respectively. We therefore generated models of the three-dimensional structures of the epimerase and the kinase domains of GNE, based on Escherichia coli UDP-N-acetylglucosamine 2-epimerase and glucokinase, respectively, and determined the localization of the HIBM mutations within these proteins. Whereas in the kinase domain most of the mutations are localized inside the enzyme, mutations in the epimerase domain are mostly located at the protein surface. Otherwise, the different mutations result in different enzymatic activities but not in different disease phenotypes and, therefore, do not suggest a direct role of the enzymatic function of GNE in the disease mechanism.  相似文献   

19.
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and D?hle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.  相似文献   

20.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is a rare, multisystem disorder characterized clinically by ptosis, progressive external ophthalmoplegia, gastrointestinal dysmotility, leukoencephalopathy, thin body habitus, and myopathy. Laboratory studies reveal defects of oxidative-phosphorylation and multiple mtDNA deletions frequently in skeletal muscle. We studied four ethnically distinct families affected with this apparently autosomal recessive disorder. Probands from each family were shown, by Southern blot, to have multiple mtDNA deletions in skeletal muscle. We mapped the MNGIE locus to 22q13.32-qter, distal to D22S1161, with a maximum two-point LOD score of 6.80 at locus D22S526. Cosegregation of MNGIE with a single chromosomal region in families with diverse ethnic backgrounds suggests that we have mapped an important locus for this disorder. We found no evidence to implicate three candidate genes in this region, by using direct sequence analysis for DNA helicase II and by assaying enzyme activities for arylsulfatase A and carnitine palmitoyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号