首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative damage to DNA can cause mutations, and mutations can lead to cancer. DNA repair of oxidative damage should therefore play a pivotal role in defending humans against cancer. This is exemplified by the increased risk of colorectal cancer of patients with germ-line mutations of the oxidative damage DNA glycosylase MUTYH. In contrast to germ-line mutations in DNA repair genes, which cause a strong deficiency in DNA repair activity in all cell types, the role of single nucleotide polymorphisms (SNPs) in sporadic cancer is unclear also because deficiencies in DNA repair, if any, are expected to be much milder. Further slowing down progress are the paucity of accurate and reproducible functional assays and poor epidemiological design of many studies. This review will focus on the most common and widely studied SNPs of oxidative DNA damage repair proteins trying to bridge the information available on biochemical and structural features of the repair proteins with the functional effects of these variants and their potential impact on the pathogenesis of disease.  相似文献   

2.
Solar UVB is carcinogenic. Nucleotide excision repair (NER) counteracts the carcinogenicity of UVB by excising potentially mutagenic UVB-induced DNA lesions. Despite this capacity for DNA repair, non-melanoma skin cancers and apparently normal sun-exposed skin contain huge numbers of mutations that are mostly attributable to unrepaired UVB-induced DNA lesions. UVA is about 20-times more abundant than UVB in incident sunlight. It does cause some DNA damage but this does not fully account for its biological impact. The effects of solar UVA are mediated by its interactions with cellular photosensitizers that generate reactive oxygen species (ROS) and induce oxidative stress. The proteome is a significant target for damage by UVA-induced ROS. In cultured human cells, UVA-induced oxidation of DNA repair proteins inhibits DNA repair. This article addresses the possible role of oxidative stress and protein oxidation in determining DNA repair efficiency – with particular reference to NER and skin cancer risk.  相似文献   

3.
Mechanism of oxidative DNA damage repair and relevance to human pathology   总被引:1,自引:0,他引:1  
Since DNA is prone to oxidative attack cells have evolved multiple protective strategies to prevent the deleterious effects of DNA oxidation. Base excision repair is the major mechanism for repair of DNA base damage by reactive oxygen species but recent evidence indicate that nucleotide excision repair proteins, that are mutated in human syndromes, are involved too. The mechanisms of repair dealing with the direct oxidation of DNA will be reviewed taking as prototype the oxidized base 7,8-dihydro-8-hydroxyguanine. The function of the individual repair components as inferred from model mice indicate that the ablation of two gene functions is mostly required to lead to accumulation of oxidative DNA damage, mutagenesis and cancer development. The recent identification of human diseases associated with mutations in oxidative damage repair show that defects in this pathway may lead to increased cancer but their major causative role seems to be in neurological diseases.  相似文献   

4.
DNA repair is a crucial factor in maintaining a low steady-state level of oxidative DNA damage. Base excision repair (BER) has an important role in preventing the deleterious effects of oxidative DNA damage, but recent evidence points to the involvement of several repair pathways in this process. Oxidative damage may arise from endogenous and exogenous sources and may target nuclear and mitochondrial DNA as well as RNA and proteins. The importance of preventing mutations associated with oxidative damage is shown by a direct association between defects in BER (i.e. MYH DNA glycosylase) and colorectal cancer, but it is becoming increasingly evident that damage by highly reactive oxygen species plays also central roles in aging and neurodegeneration. Mutations in genes of the nucleotide excision repair (NER) pathway are associated with diseases, such as xeroderma pigmentosum and Cockayne syndrome, that involve increased skin cancer risk and/or developmental and neurological symptoms. In this review we will provide an updating of the current evidence on the involvement of NER factors in the control of oxidative DNA damage and will attempt to address the issue of whether this unexpected role may unlock the difficult puzzle of the pathogenesis of these syndromes.  相似文献   

5.
McMurray CT 《Mutation research》2005,577(1-2):260-274
One of the critical emerging problems in modern pathobiology is how cells govern the decision to live or die, and the cost of making such a decision. Nowhere are these questions more poignant than in deciphering the tissue-specific responses to DNA damage. Mutations in DNA repair enzymes, malfunctions in cell cycle regulation, and genetic instability are associated with most somatic cancers. However, in many hereditary diseases arising from mutations in DNA repair proteins, the same dominant mutations that cause cancer in dividing cells are often associated with cell death in terminally differentiated neurons. Context dependent differences in the response to DNA damage are used to make fundamental choices as to cell fate, and are likely to shed light on the mechanisms underlying human disease.  相似文献   

6.
The relationships between inflammation and cancer are varied and complex. An important connection linking inflammation to cancer development is DNA damage. During inflammation reactive oxygen and nitrogen species (RONS) are created to combat pathogens and to stimulate tissue repair and regeneration, but these chemicals can also damage DNA, which in turn can promote mutations that initiate and promote cancer. DNA repair pathways are essential for preventing DNA damage from causing mutations and cytotoxicity, but RONS can interfere with repair mechanisms, reducing their efficacy. Further, cellular responses to DNA damage, such as damage signaling and cytotoxicity, can promote inflammation, creating a positive feedback loop. Despite coordination of DNA repair and oxidative stress responses, there are nevertheless examples whereby inflammation has been shown to promote mutagenesis, tissue damage, and ultimately carcinogenesis. Here, we discuss the DNA damage-mediated associations between inflammation, mutagenesis and cancer.  相似文献   

7.
Humans are daily exposed to background radiation and various sources of oxidative stress. My research has focused in the last 12 years on the effects of ionizing radiation on DNA, which is considered as the key target of radiation in the cell. Ionizing radiation and endogenous cellular oxidative stress can also induce closely spaced oxidatively induced DNA lesions called "clusters" of DNA damage or locally multiply damage sites, as first introduced by John Ward. I am now interested in the repair mechanisms of clustered DNA damage, which is considered as the most difficult for the cell to repair. A main part of my research is devoted to evaluating the role of clustered DNA damage in the promotion of carcinogenesis in vitro and in vivo . Currently in my laboratory, there are two main ongoing projects. (1) Study of the role of BRCA1 and DNA-dependent protein kinase catalytic subunit repair proteins in the processing of clustered DNA damage in human cancer cells. For this project, we use several tumor cell lines, such as breast cancer cell lines MCF-7 and HCC1937 (BRCA1 deficient) and human glioblastoma cells MO59J/K; and (2) Possible use of DNA damage clusters as novel cancer biomarkers for prognostic and therapeutic applications related to modulation of oxidative stress. In this project human tumor and mice tissues are being used.  相似文献   

8.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

9.
Systems for the repair of DNA double-strand breaks (DSBs) are necessary to maintain genome integrity and normal functionality of cells in all organisms. Homologous recombination (HR) plays an important role in repairing accidental and programmed DSBs in mitotic and meiotic cells, respectively. Failure to repair these DSBs causes genome instability and can induce tumorigenesis. Rad51 and Rad52 are two key proteins in homologous pairing and strand exchange during DSB-induced HR; both are highly conserved in eukaryotes. In this study, we analyzed pathogenic single nucleotide polymorphisms (SNPs) in human RAD51 and RAD52 using the Polymorphism Phenotyping (PolyPhen) and Sorting Intolerant from Tolerant (SIFT) algorithms and observed the effect of mutations in highly conserved domains of RAD51 and RAD52 on DNA damage repair in a Saccharomyces cerevisiae-based system. We identified a number of rad51 and rad52 alleles that exhibited severe DNA repair defects. The functionally inactive SNPs were located near ATPase active site of Rad51 and the DNA binding domain of Rad52. The rad51-F317I, rad52-R52W, and rad52-G107C mutations conferred hypersensitivity to methyl methane sulfonate (MMS)-induced DNA damage and were defective in HR-mediated DSB repair. Our study provides a new approach for detecting functional and loss-of-function genetic polymorphisms and for identifying causal variants in human DNA repair genes that contribute to the initiation or progression of cancer.  相似文献   

10.
DNA repair is an active cellular process to respond to constant DNA damage caused by metabolic processes and environmental factors. Since the outcome of DNA damage is generally adverse and long term effects may contribute to oncogenesis, cells have developed a variety of DNA repair mechanisms, which operate depending on the type of DNA damage inflicted. At least 15 Fanconi anemia (FA) proteins interact in a common pathway involved in homologous recombination. Inherited homozygous mutations in any of these FA genes cause a rare disease, Fanconi anemia, characterized by congenital abnormalities, progressive bone-marrow failure and cancer susceptibility. Heterozygous germline FA mutations predispose to various types of cancer. In addition, somatic FA mutations have been identified in diverse cancer types. Evidence exists that cells deficient in the FA pathway become dependent on alternative pathways for survival. Additional inhibition of such alternative pathways is thus expected to result in cell death, creating a relationship of synthetic lethality. Identifying these relationships can reveal yet unknown mechanisms of DNA repair and new targets for therapy.  相似文献   

11.
Oxidative DNA damage processing in nuclear and mitochondrial DNA   总被引:5,自引:0,他引:5  
Bohr VA  Dianov GL 《Biochimie》1999,81(1-2):155-160
Living organisms are constantly exposed to oxidative stress from environmental agents and from endogenous metabolic processes. The resulting oxidative modifications occur in proteins, lipids and DNA. Since proteins and lipids are readily degraded and resynthesized, the most significant consequence of the oxidative stress is thought to be the DNA modifications, which can become permanent via the formation of mutations and other types of genomic instability. Many different DNA base changes have been seen following some form of oxidative stress, and these lesions are widely considered as instigators for the development of cancer and are also implicated in the process of aging. Several studies have documented that oxidative DNA lesions accumulate with aging, and it appears that the major site of this accumulation is mitochondrial DNA rather than nuclear DNA. The DNA repair mechanisms involved in the removal of oxidative DNA lesions are much more complex than previously considered. They involve base excision repair (BER) pathways and nucleotide excision repair (NER) pathways, and there is currently a great deal of interest in clarification of the pathways and their interactions. We have used a number of different approaches to explore the mechanism of the repair processes, to examine the repair of different types of oxidative lesions and to measure different steps of the repair processes. Furthermore, we can measure the DNA damage processing in the nuclear DNA and separately, in the mitochondrial DNA. Contrary to widely held notions, mitochondria have efficient DNA repair of oxidative DNA damage.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the oxidative pentose phosphate cycle, regulates the NADPH/NADP(+) ratio in eukaryotic cells. G6PD deficiency is one of the most common mutations in humans and is known to cause health problems for hundreds of millions worldwide. Although it is known that decreased G6PD functionality can result in increased susceptibility to oxidative stress, the molecular targets of this stress are not known. Using a Chinese hamster ovary G6PD-null mutant, we previously demonstrated that exposure to a thiol-specific oxidant, hydroxyethyldisulfide, caused enhanced radiation sensitivity and an inability to repair DNA double strand breaks. We now demonstrate a molecular mechanism for these observations: the direct inhibition of DNA end binding activity of the Ku heterodimer, a DNA repair protein, by oxidation of its cysteine residues. Inhibition of Ku DNA end binding was found to be reversible by treatment of the nuclear extract with dithiothreitol, suggesting that the homeostatic regulation of reduced cysteine residues in Ku is a critical function of G6PD and the oxidative pentose cycle. In summary, we have discovered a new layer of DNA damage repair, that of the functional maintenance of repair proteins themselves. In view of the rapidly escalating number of roles ascribed to Ku, these results may have widespread ramifications.  相似文献   

13.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

14.
Mutations in breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 predispose women to a high risk of these cancers. Here, we show that lymphoblasts of women with BRCA1 mutations who had been diagnosed with breast cancer are deficient in the repair of some products of oxidative DNA damage, namely, 8-hydroxy-2'-deoxyguanosine and 8,5'-cyclopurine-2'-deoxynucleosides. Cultured lymphoblasts from 10 individuals with BRCA1 mutations and those from 5 control individuals were exposed to 5 Gy of ionizing radiation to induce oxidative DNA damage and then allowed to repair this damage. DNA samples isolated from these cells were analyzed by liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry to measure 8-hydroxy-2'-deoxyguanosine, (5'-S)-8,5'-cyclo-2'-deoxyadenosine, (5'-R)-8,5'-cyclo-2'-deoxyguanosine, and (5'-S)-8,5'-cyclo-2'-deoxyguanosine. After irradiation and a subsequent period of repair, no significant accumulation of these lesions was observed in the DNA from control cells. In contrast, cells with BRCA1 mutations accumulated statistically significant levels of these lesions in their DNA, providing evidence of a deficiency in DNA repair. In addition, a commonly used breast tumor cell line exhibited the same effect when compared to a relevant control cell line. The data suggest that BRCA1 plays a role in cellular repair of oxidatively induced DNA lesions. The failure of cells with BRCA1 mutations to repair 8,5'-cyclopurine-2'-deoxynucleosides indicates the involvement of BRCA1 in nucleotide-excision repair of oxidative DNA damage. This work suggest that accumulation of these lesions may lead to a high rate of mutations and to deleterious changes in gene expression, increasing breast cancer risk and contributing to breast carcinogenesis.  相似文献   

15.
The ability to sensitize cancer cells to radiation would be highly beneficial for successful cancer treatment. One mode of action for ionizing radiation is the induction of cell death through infliction of extensive oxidative damage to cellular DNA, including mitochondrial DNA (mtDNA). The ability of cells to repair mtDNA and otherwise maintain the integrity of their mitochondria is vital for protection of the cells against oxidative damage. Because efficient repair of oxidative damage in mtDNA may play a crucial role in cancer cell resistance, interference with this repair process could be an effective way to achieve a radiation sensitive phenotype in otherwise resistant cancer cells. Successful repair of DNA is achieved through a precise and highly regulated multistep process. Expression of excessive amounts of one of the repair enzymes may cause an imbalance of the whole repair system and lead to the loss of repair efficiency. To study the effects of changing mtDNA repair capacity on overall cell survival following oxidative stress, we expressed a bacterial repair enzyme, Exonuclease III (ExoIII) containing the mitochondrial targeting signal of manganese superoxide dismutase, in a human malignant breast epithelial cell line, MDA-MB-231. Following transfection, specific exonuclease activity was found in mitochondrial extracts. In order to examine the effects on repair of oxidative damage in mtDNA, cells were exposed to the enzyme xanthine oxidase and its substrate hypoxanthine. mtDNA repair was evaluated using quantitative Southern blot analysis. The results revealed that cells expressing ExoIII in mitochondria are deficient in mtDNA repair when compared with control cells that express ExoIII without MTS. This diminished mtDNA repair capacity rendered MDA-MB-231 cells more sensitive to oxidative damage, which resulted in a decrease in their long-term survival following oxidative stress.  相似文献   

16.
Factors contributing to the outcome of oxidative damage to nucleic acids   总被引:9,自引:0,他引:9  
Oxidative damage to DNA appears to be a factor in cancer, yet explanations for why highly elevated levels of such lesions do not always result in cancer remain elusive. Much of the genome is non-coding and lesions in these regions might be expected to have little biological effect, an inference supported by observations that there is preferential repair of coding sequences. RNA has an important coding function in protein synthesis, and yet the consequences of RNA oxidation are largely unknown. Some non-coding nucleic acid is functional, e.g. promoters, and damage to these sequences may well have biological consequences. Similarly, oxidative damage to DNA may promote microsatellite instability, inhibit methylation and accelerate telomere shortening. DNA repair appears pivotal to the maintenance of genome integrity, and genetic alterations in repair capacity, due to single nucleotide polymorphisms or mutation, may account for inter-individual differences in cancer susceptibility. This review will survey these aspects of oxidative damage to nucleic acids and their implication for disease.  相似文献   

17.
《BBA》2022,1863(5):148554
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome – mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.  相似文献   

18.
Telomeres are the very ends of the chromosomes. They can be seen as natural double-strand breaks (DSB), specialized structures which prevent DSB repair and activation of DNA damage checkpoints. In somatic cells, attrition of telomeres occurs after each cell division until replicative senescence. In the absence of telomerase, telomeres shorten due to incomplete replication of the lagging strand at the very end of chromosome termini. Moreover, oxidative stress and accumulating reactive oxygen species (ROS) lead to an increased telomere shortening due to a less efficient repair of SSB in telomeres. The specialized structures at telomeres include proteins involved in both telomere maintenance and DNA repair. However when a telomere is damaged and has to be repaired, those proteins might fail to perform an accurate repair of the damage. This is the starting point of this article in which we first summarize the well-established relationships between DNA repair processes and maintenance of functional telomeres. We then examine how damaged telomeres would be processed, and show that irradiation alters telomere maintenance leading to possibly dramatic consequences. Our point is to suggest that those consequences are not restricted to the short term effects such as increased radiation-induced cell death. On the contrary, we postulate that the major impact of the loss of telomere integrity might occur in the long term, during multistep carcinogenesis. Its major role would be to act as an amplificator event unmasking in one single step recessive radiation-induced mutations among thousands of genes and providing cellular proliferative advantage. Moreover, the chromosomal instability generated by damaged telomeres will favour each step of the transformation from normal to fully transformed cells.  相似文献   

19.
DNA mismatch repair and cancer   总被引:31,自引:0,他引:31  
Five human DNA mismatch repair genes have been identified that, when mutated, cause susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). Mutational inactivation of both copies of a DNA mismatch repair gene results in a profound repair defect and progressive accumulation of mutations throughout the genome. Some of the mutations confer selective advantage on the cells, giving rise to cancer. Recent discoveries suggest that apart from postreplication repair, DNA mismatch repair proteins have several other functions that are highly relevant to carcinogenesis. These include DNA damage surveillance, prevention of recombination between nonidentical sequences and participation in meiotic processes (chromosome pairing). A brief overview of these different features of the human DNA mismatch repair system will be provided, with the emphasis in their implications in cancer development.  相似文献   

20.
DNA damage responses to oxidative stress   总被引:12,自引:0,他引:12  
Barzilai A  Yamamoto K 《DNA Repair》2004,3(8-9):1109-1115
The DNA damage response is a hierarchical process. DNA damage is detected by sensor proteins such as the MRN complex that transmit the information to transducer proteins such as ATM and ATR, which control the damage response through the phosphorylation of effector proteins. The extent of the DNA damage determines cell fate: cell cycle arrest and DNA repair or the activation of apoptotic pathways. In aerobic cells, reactive oxygen species (ROS) are generated as a by-product of normal mitochondrial activity. If not properly controlled, ROS can cause severe damage to cellular macromolecules, especially the DNA. We describe here some of the cellular responses to alterations in the cellular redox state during hypoxia or oxidative stress. Oxidative damage in DNA is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest of the three excision repair pathways. To allow time for DNA repair, the cells activate their cell cycle checkpoints, leading to cell cycle arrest and preventing the replication of damage and defective DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号