首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to examine the effects of high water temperatures on the allometric scaling effects of energy and protein starvation losses by juvenile barramundi, Lates calcarifer. The somatic energy and protein loss was examined in fish of varying sizes when starved for 24 or 25 days at temperatures ranging from 23 °C to 38 °C. The amount of energy and protein lost varied according to both size and temperature and was consistent with the function of a*W(b), where a is a temperature dependent coefficient, W the animal's weight and b an exponent relating energy loss to live-weight. The coefficient for energy or protein loss varied and was described by a polynomial function, with a general increase from 23 °C to 32 °C, before a dramatic decline after 35°C. In contrast, the exponent for energy loss was relatively constant between 23 °C and 35 °C, but showed a rapid increase at 38 °C. Both the coefficients and exponents of protein loss mirrored that of energy loss. Analysis of the protein and lipid contributions to energy loss shows that typically lipid loss accounts for the greater part of energy loss (~67%), but also shows that above 35 °C protein energy loss increases (from ~33% to ~39%) while the losses seen from lipid catabolism remain the same. These results show that one of the main nutritional issues associated with heat stress in fish is a dramatic increase in endogenous loss of protein.  相似文献   

2.
Ammonia emissions during vermicomposting of sheep manure   总被引:2,自引:0,他引:2  
The effect of C:N ratio, temperature and water content on ammonia volatilization during two-phase composting of sheep manure was evaluated. The aerobic phase was conducted under field conditions. This was followed by Phase II, vermicomposting, conducted in the laboratory under controlled conditions of water content (70% and 80%) and temperature (15 and 22 °C). The addition of extra straw lead to a 10% reduction in NH3 volatilization compared to sheep manure composted without extra straw. Temperature and water content significantly effected ammonia volatilization at 0 day in Phase II, with a water content of 70% and temperature of 22 °C leading to greater losses of ammonia. Nitrogen loss by ammonia volatilization during vermicomposting ranged from 8% to 15% of the initial N content. The addition of extra straw did not result in significant differences in total carbon content following vermicomposting.  相似文献   

3.
Two lab-scale aerobic granular sludge sequencing batch reactors were operated at 20 and 30°C and compared for phosphorus (P) removal efficiency and microbial community composition. P-removal efficiency was higher at 20°C (>90%) than at 30°C (60%) when the sludge retention time (SRT) was controlled at 30 days by removing excess sludge equally throughout the sludge bed. Samples analyzed by fluorescent in situ hybridization (FISH) indicated a segregation of biomass over the sludge bed: in the upper part, Candidatus Competibacter phosphatis (glycogen-accumulating organisms--GAOs) were dominant while in the bottom, Candidatus Accumulibacter phosphatis (polyphosphate-accumulating organisms--PAOs) dominated. In order to favour PAOs over GAOs and hence improve P-removal at 30°C, the SRT was controlled by discharging biomass mainly from the top of the sludge bed (80% of the excess sludge), while bottom granules were removed in minor proportions (20% of the excess sludge). With the selective sludge removal proposed, 100% P-removal efficiency was obtained in the reactor operated at 30°C. In the meantime, the biomass in the 30°C reactor changed in color from brownish-black to white. Big white granules appeared in this system and were completely dominated by PAOs (more than 90% of the microbial population), showing relatively high ash content compared to other granules. In the reactor operated at 20°C, P-removal efficiency remained stable above 90% regardless of the sludge removal procedure for SRT control. The results obtained in this study stress the importance of sludge discharge mainly from the top as well as in minor proportions from the bottom of the sludge bed to control the SRT in order to prevent significant growth of GAOs and remove enough accumulated P from the system, particularly at high temperatures (e.g., 30°C).  相似文献   

4.
A modified rinsing method for the in situ technique was developed to separate, isolate and characterise the soluble (S), the insoluble washout (W–S) and the non-washout fractions (D + U) within one procedure. For non-incubated bags (t = 0 h), this method was compared with the conventional, Combined Fractionation (CF) method that measures the D + U and S fractions in separate steps and subsequently calculates the W–S fraction. The modified method was based on rinsing of nylon bags in a closed vessel containing a buffer solution (pH 6.2) during 1 h, where shaking speeds of 40, 100, and 160 strokes per minutes (spm) were evaluated, and tested for six feed ingredients (faba beans, maize, oats, peas, soya beans and wheat) and four forages (two ryegrass silages and two maize silages). The average recoveries as the sum of all fractions were 0.972 ± 0.041 for N and 0.990 ± 0.050 for starch (mean ± s.d.). The mean W–S fraction increased with increasing shaking speed and varied between 0.017 (N) and 0.083 (starch) at 40 spm and 0.078 (N) and 0.303 (starch) at 160 spm, respectively. For ryegrass silages, the W–S fraction was absent at all shaking speeds, but was present in the CF method. The modified method, in particular at 40 and 100 spm, reduced the loss of small particles during rinsing, resulting in lower W–S and higher D + U fractions for N and starch compared with the CF method. For soya beans and ryegrass silage, the modified method reduced the S fraction of N compared with the CF method. The results obtained at 160 spm showed the best comparison with those from the CF method. The W–S fraction of the feedstuff obtained at 160 spm contained mainly particles smaller than 40 μm (0.908 ± 0.086). In most feedstuff, starch was the most abundant chemical component in the W–S fraction and its content (726 ± 75 g/kg DM) was higher than in the D + U fraction (405 ± 177 g/kg DM). Alkaline-soluble proteins were the dominant N-containing components in the W–S fraction of dry feed ingredients and its relative content (0.79 ± 0.18 of total N in W–S) was higher than in the D + U fraction (0.59 ± 0.07 of total N in D + U) for all feedstuff except maize. The molecular weight distribution of the alkaline-soluble proteins differed between the W–S and the D + U fractions of all dry feed ingredients, except soya beans and wheat.  相似文献   

5.
Pressurized low polarity water (PLPW) fractionation of triticale straw was optimized to maximize hemicellulose and lignin yield, and to produce a cellulose rich fraction for biofuels production. The optimum PLPW conditions for hemicellulose yield was determined to be 165 °C, with a flow rate of 115 mL/min, and a solvent-to-solid ratio of 60 mL/g. Hemicellulose and lignin yield generally increased with increasing temperature and solvent-to-solid ratio. There was a small decrease in hemicellulose yield with an increase in flow rate. Minimum lignin content of the triticale straw residue after extraction was predicted to occur at a processing condition of 206 °C, 160 mL/min, and 67 mL/g. PLPW was successful in removing 73-78% of the hemicellulose, leaving a cellulose rich fraction (65% glucose concentration). Lignin was equally distributed between the solid residues and the extracts and most of the hemicellulose was extracted in oligomer form. Remaining solid residues after fractionation were highly digestible by cellulase enzymes.  相似文献   

6.
在山西太岳山地区,向油松林土壤中分别添加生物炭、玉米秸秆、蒙古栎叶、油松叶、木屑等5种有机物,测定各处理的土壤养分、酶及微生物生物量等指标,研究外源有机物添加下土壤酶化学计量特征及微生物元素组成的内稳性。结果表明: 添加木屑显著增加了土壤N(17.1%)、P(37.6%)含量,显著增加了微生物生物量碳(118.0%)、氮(41.0%)、磷(176.6%)。C、N、P获取酶(β-1,4-葡萄糖苷酶、β-1,4-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶、酸性磷酸酶)活性总体上随添加有机物C/N值(生物炭<蒙古栎叶<油松叶<玉米秸秆<木屑)的增加而增加,其化学计量变化受土壤养分状态及微生物生物量的调控。酶活性相对比例及矢量特性表明,研究区微生物生长受到P的限制,且添加有机物没有缓解P的制约作用。微生物生物量碳、氮及化学计量比C∶N、C:P、N∶P属于绝对稳态型,而微生物生物量磷处于非稳态。微生物通过改变酶的分配策略保持微生物体元素及比例的相对稳定,仅有微生物生物量磷对土壤养分变化表现出不稳定性,可能因为P是研究区微生物生长的限制性元素。  相似文献   

7.
Summary Uniformly14C labelled glucose, cellulose and wheat straw and specifically14C labelled lignin component in corn stalks were aerobically incubated for 12 weeks in a chernozem soil alongwith15N labelled ammonium sulphate. Glucose was most readily decomposed, followed in order by cellulose, wheat straw and corn stalk lignins labelled at methoxyl-, side chain 2-and ring-C. More than 50% of14C applied as glucose, cellulose and wheat straw evolved as CO2 during the first week. Lignin however, decomposed relatively slowly. A higher proportion of14C was transformed into microbial biomass whereas lignins contributed a little to this fraction.After 12 weeks of incubation nearly 60% of the lignin14C was found in humic compounds of which more than 70% was resistant to hydrolysis with 6N HCl. Maximum incorporation of15N in humic compounds was observed in cellulose amended soil. However, in this case more than 80% of the15N was in hydrolysable forms.Immobilization-remineralization of applied15N was most rapid in glucose treated soil and a complete immobilization followed by remineralization was observed after 3 days. The process was much slow in soil treated with cellulose, wheat straw or corn stalks. More than 70% of the newly immobilized N was in hydrolysable forms mainly reepresenting the microbial component.Serial hydrolysis of soil at different incubation intervals showed a greater proportion of 6N HCl hydrolysable14C and15N in fractions representing microbial material.14C from lignin carbons was relatively more uniformly distributed in different fractions as compared to glucose, cellulose and wheat straw where a major portion of14C was in easily hydrolysable fractions.  相似文献   

8.
Summary Hydrolysis and acidification of source sorted household solid waste (SSHSW) at 70°C was studied using continuous stirred tank reactor (CSTR). The soluble COD/total initial COD-ratio of the SSHSW increased from 25 to 35% during the CSTR treatment. A thermophilic (55°C) upflow anaerobic sludge blanket (UASB) reactor removed up to 80% of the COD in the liquid fraction of the SSHSW treated at 70°C.  相似文献   

9.
Two bioremediation technologies were performed in order to explore a better treatment process for an oily sludge restoration in China during 2004. The bioremediation by augmentation of biopreparation was compared with a conventional composting. The oily sludge and oil-polluted soil were received from an oil production plant. The total hydrocarbon content (THC) varied from 327.7 to 371.2 g kg−1 of dry sludge and the THC in contaminated soil was 151.0 g kg−1. Before application of preparation, straw, sawdust, top sand and pure soil were added in different proportions to the sludge and soil and mixed thoroughly. Such sludge and soil composites were used for negative controls and for activation of indigenous oil degrading microorganisms with addition of fertilizer (positive controls). For composting, crude manure and straw were added to the oily sludge and the THC was 101.4 g kg−1. The biopreparation was applied every 2 weeks and experiment lasted 56 days under the ambient temperature. The sludge was mixed and watered every 3 days. After three times of biopreparation application, the THC decreased by 46–53% in the oily sludge and soil, while in the positive controls (activation of indigenous microorganisms) the THC decreased by 13–23%, and there was no oil degradation in negative controls After composting, the THC decreased by 31% in the oily sludge. The planting of Tall Fescue (Festuca arundinace) revealed a decrease of sludge toxicity after application of both bioremediation technologies and additionally decreased the THC by 5–7%.  相似文献   

10.
We studied the effect of five bedding materials (wood shavings, sawdust, peanut hulls, wheat straw and shredded paper) and PLTtrade mark (a commercial formulation of Na bisulfate) in factorial combinations, on NH(3) emissions from broiler manure. Treatments were incubated for 11 days at 25 degrees C and 98% relative humidity. Ammonia was trapped in 0.1N H(2)SO(4) and measured colorimetrically as NH(4)(+), and CO(2) was monitored with an infrared analyzer. Ammonia and CO(2) emissions were suppressed by PLT throughout the study. Wheat straw, wood shavings, and sawdust, with C(total)/N(total)>50 or C(biodegradable)/N>20, had low NH(3) emissions. Total NH(3) emissions from peanut hulls and shredded paper were the highest, probably due to peanut hulls' low C/N ratio and shredded paper's alkaline pH. No significant interactions on NH(3) emissions were detected between PLT and bedding materials.  相似文献   

11.
Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed.  相似文献   

12.
The presence of heavy metals in sludge stabilized in a reed bed system may affect its use for agricultural purposes. However, the environmental impact of sludge depends on the availability and phytotoxicity of these heavy metals.The aim of this research was to determine the effectiveness of a reed bed (Phragmites australis) sludge treatment system in two urban wastewater treatment plants in Italy after a three-year period of operation: (i) by estimating the process of sludge stabilization, following conventional and nonconventional parameters related to the evolution of organic matter quality (water soluble carbon, dehydrogenase activity, pyrolytic fragments); (ii) by following the heavy metal bioavailability in the sludge through their fractionation. For heavy metal fractionation, the Community Bureau of Reference (BCR) was followed.The results showed that there was mineralization and stabilization of sludge over time, suggested by the decrease of about 35% in water soluble carbon and of about 60-80% of dehydrogenase activity. Moreover, significant values of benzene (17%), toluene (31%) and phenol (9%) were found at the end of experimentation in both treatment wetlands, highlighting the re-synthesis of humic-like matter.The results also showed that the content of heavy metals after 30 months was associated with the less mobile fractions of the sludge (more than 60% of total heavy metal content for almost metal), in particular, the fraction linked to the organic matter.  相似文献   

13.
Wan C  Li Y 《Bioresource technology》2011,102(20):9788-9793
Exhaustive hot water extraction (HWE) and liquid hot water (LHW) pretreatment were evaluated for their effects on degradation of biomass feedstocks (i.e., corn stover, wheat straw, and soybean straw) by Ceriporiopsis subvermispora. HWE (85 °C for 10 min) partially removed water soluble extractives and subsequently improved fungal degradation on wheat straw while it had little or no effect on the fungal degradation of corn stover and soybean straw. In contrast, LHW pretreatment at 170 °C for 3 min improved the fungal degradation of soybean straw; thus, lignin removal of 36.70% and glucose yield of 64.25% were obtained from the combined LHW and fungal pretreatment. However, corn stover, which was effectively degraded by fungal pretreatment alone, was less affected by this combined pretreatment. Our results indicated that a HWE or LHW pretreatment conducted under mild conditions worked synergistically with fungal degradation for some recalcitrant feedstocks.  相似文献   

14.
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO(2)]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO(2)] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO(2)] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34-35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO(2)], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.  相似文献   

15.
For small aquatic endotherms, heat loss while floating on water can be a dominant energy cost, and requires accurate estimation in energetics models for different species. We measured resting metabolic rate (RMR) in air and on water for a small diving bird, the Cassin's auklet (Ptychoramphus aleuticus), and compared these results to published data for other diving birds of diverse taxa and sizes. For 8 Cassin's auklets (~165 g), the lower critical temperature was higher on water (21 °C) than in air (16 °C). Lowest values of RMR (W kg?1) averaged 19% higher on water (12.14 ± 3.14 SD) than in air (10.22 ± 1.43). At lower temperatures, RMR averaged 25% higher on water than in air, increasing with similar slope. RMR was higher on water than in air for alcids, cormorants, and small penguins but not for diving ducks, which appear exceptionally resistant to heat loss in water. Changes in RMR (W) with body mass either in air or on water were mostly linear over the 5- to 20-fold body mass ranges of alcids, diving ducks, and penguins, while cormorants showed no relationship of RMR with mass. The often large energetic effects of time spent floating on water can differ substantially among major taxa of diving birds, so that relevant estimates are critical to understanding their patterns of daily energy use.  相似文献   

16.
The influence of pH shocks on the trace metal dynamics and performance of methanol fed upflow anaerobic granular sludge bed (UASB) reactors was investigated. For this purpose, two UASB reactors were operated with metal pre-loaded granular sludge (1mM Co, Ni and Fe; 30°C; 96h) at an organic loading rate (OLR) of 5gCOD l reactor–1d–1. One UASB reactor (R1) was inoculated with sludge that originated from a full scale reactor treating alcohol distillery wastewater, while the other reactor (R2) was inoculated with sludge from a full scale reactor treating paper mill wastewater. A 30h pH shock (pH 5) strongly affected the metal retention dynamics within the granular sludge bed in both reactors. Iron losses in soluble form with the effluent were considerable: 2.3 and 2.9% for R1 and R2, respectively, based on initial iron content in the reactors, while losses of cobalt and nickel in soluble form were limited. Sequential extraction of the metals from the sludge showed that cobalt, nickel, iron and sulfur were translocated from the residual to the organic/sulfide fraction during the pH shock in R2, increasing 34, 47, 109 and 41% in the organic/sulfide fraction, respectively. This is likely due to the modification of the iron sulfide precipitate stability, which influences the extractability of iron and trace metals. Such a translocation was not observed for the R1 sludge during the first 30h pH shock, but a second 4day pH shock induced significant losses of cobalt (18%), iron (29%) and sulfur (29%) from the organic/sulfide fraction, likely due to iron sulfide dissolution and concomitant release of cobalt. After the 30h pH shock, VFA accumulated in the R2 effluent, whereas both VFA and methanol accumulated in R1 after the 4day pH shock. The formed VFA, mainly acetate, were not converted to methane due to the loss of methanogenic activity of the sludge on acetate. The VFA accumulation gradually disappeared, which is likely to be related to out-competition of acetogens by methanogens. Zinc, copper and manganese supply did not have a clear effect on the acetate removal and methanol conversion, but zinc may have induced the onset of methanol degradation after day 152 in R1.  相似文献   

17.
This paper describes an incubation experiment with homogeneously 14C labeled maize-straw and its insoluble fraction. The role of the soluble fraction in the decomposition process was assessed, using three independently measured characteristics: (1) fractionation of the maize-straw, resulting in kinetically different fractions; (2) microbial biomass C and its 14C activity determined by a fumigation extraction method, and (3) the 14C activity of the released CO2-C. The fumigation extraction method was proved to be useful from 9 days after the application of the maize-straw onwards. The fractionation method yielded a soluble (48%), a (hemi) cellulosic (47%), and a lignin fraction (1%). Nine days after addition of either the complete residue or its insoluble fraction, the microbial biomass C increased from 53 to 337 and 217 mg C kg-1 dry soil, respectively. Similar values were maintained up to day 40. The large increase in microbial activity was accompanied by a N-immobilization of 65 and 29 mg N Kg-1 dry soil for the maize-straw treatment and its insoluble fraction, respectively, resulting in biomass C/N values of 5.5 and 5.6 A genuine priming effect (10 and 7% of the total CO2-C production) on the mineralization of native soil organic C was caused by an increase in decomposition of the native C rather than by an increase in turnover of the microbial biomass in the soil amended with maize straw. The soluble fraction caused a priming effect on the decomposition of the less decomposable cell-wall fraction. Calculations by nonlinear regression confirmed this observation.  相似文献   

18.
Mineralization of radioactive synthetic lignin (14C-DHP) was studied in a compost environment at 35, 50 and 58 degrees C. Compost samples were successively extracted with water, dioxane and alkali, and the molecular weight distribution of some extracts was determined by gel permeation chromatography (GPC). Biodegradation of lignin-containing spruce groundwood (SGW) and pine sawdust was concurrently determined in controlled composting tests by measuring evolved CO2. The temperatures were the same as in the 14C-DHP mineralization experiment and bleached kraft paper, with a lignin content of 0.2%, was used as a reference. The mineralization of 14C-DHP was relatively high (23-24%) at 35 degrees C and 50 degrees C, although the mixed population of compost obviously lacks the most effective lignin degraders. At 58 degrees C the mineralization of 14C-DHP, as well as the biodegradation of SGW and sawdust, was very low, indicating that the lignin-degrading organisms of compost were inactivated at this temperature. SGW was poorly biodegradable (<40%) in controlled composting tests compared with kraft paper (77-86%) at all temperatures, which means that lignin inhibits the degradation of carbohydrates. During the incubation, water-soluble degradation products, mainly monomers and dimers, and the original 14C-DHP were either mineralized or bound to humic substances. A substantial fraction of 14C-DHP was incorporated into humin or other insolubles.  相似文献   

19.
Changes in physical, chemical and microbial parameters were investigated during the composting of municipal sewage sludge. Raw sewage sludge (30% dry matter) was mixed with compost from sewage sludge (85% dry matter) in 3:1 ratio (v/v). The mixture was divided into 4 windrows which were composted under the same conditions except the turning factor. The turning was every 7, 10, 15 days and according to the temperature which must be (55–65°C) for windrow 1 (W1), windrow 2 (W2), windrow 3 (W3) and windrow 4 (W4), respectively. Water was added to adjust the moisture content (40–60%). The composting process consisted of 2 periods; fermentation (12 weeks) and maturation (4 weeks). The results showed that the temperature reached the maximum after 12 weeks for W1 and 11 weeks for W2, W3 and W4 and then decreased. The final compost was nearly odourless and black, especially in case of W4. The general trend indicates a decrease in organic matter, organic carbon and nitrogen (N), whereas ash, potassium (K) and phosphorus (P) increased and consequently C/K and C/P ratios decreased. There was a slight increase in C/N ratio. The pH increased and then decreased to near neutrality at the end. The mesophilic bacteria increased during the fermentation period and decreased after that, whereas the thermophilic ones increased with increasing of temperature, decreased after 2 weeks and increased again during the fermentation period and then decreased. The mesophilic and thermophilic fungi were present during the first week and disappeared after that. The final compost was pathogens-free as indicated by the counts of coliforms and Salmonella.  相似文献   

20.
We monitored soil respiration (Rs), soil temperature (T) and volumetric water content (VWC%) over four years in one typical conventional and four alternative cropping systems to understand Rs in different cropping systems with their respective management practices and environmental conditions. The control was conventional double-cropping system (winter wheat and summer maize in one year - Con.W/M). Four alternative cropping systems were designed with optimum water and N management, i.e. optimized winter wheat and summer maize (Opt.W/M), three harvests every two years (first year, winter wheat and summer maize or soybean; second year, fallow then spring maize - W/M-M and W/S-M), and single spring maize per year (M). Our results show that Rs responded mainly to the seasonal variation in T but was also greatly affected by straw return, root growth and soil moisture changes under different cropping systems. The mean seasonal CO2 emissions in Con.W/M were 16.8 and 15.1 Mg CO2 ha−1 for summer maize and winter wheat, respectively, without straw return. They increased significantly by 26 and 35% in Opt.W/M, respectively, with straw return. Under the new alternative cropping systems with straw return, W/M-M showed similar Rs to Opt.W/M, but total CO2 emissions of W/S-M decreased sharply relative to Opt.W/M when soybean was planted to replace summer maize. Total CO2 emissions expressed as the complete rotation cycles of W/S-M, Con.W/M and M treatments were not significantly different. Seasonal CO2 emissions were significantly correlated with the sum of carbon inputs of straw return from the previous season and the aboveground biomass in the current season, which explained 60% of seasonal CO2 emissions. T and VWC% explained up to 65% of Rs using the exponential-power and double exponential models, and the impacts of tillage and straw return must therefore be considered for accurate modeling of Rs in this geographical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号