首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Z  Wang L 《FEBS letters》2012,586(8):1135-1140
Mdm2 is a crucial negative regulator of the tumor suppressor function of p53. However, little is known about Mdm2 protein stability regulation by other tumor suppressors. Nuclear receptor small heterodimer partner (SHP, NROB2) functions as a tumor suppressor in liver cancer. We show here a surprising finding of a feedback regulatory loop between SHP and Mdm2. SHP stabilizes Mdm2 protein by abrogating Mdm2 self-ubiquitination, and Mdm2 in turn attenuates SHP protein levels under p53-deficient conditions. Such cross-regulation critically depends on the physical interaction of SHP with Mdm2 through the SHP K170 residue. The Mdm2-SHP interplay represents a novel component of Mdm2 signaling that is likely to dictate Mdm2 activity and function.  相似文献   

2.
3.
Regulation of Mdm2-Directed Degradation by the C Terminus of p53   总被引:12,自引:6,他引:6       下载免费PDF全文
The stability of the p53 tumor suppressor protein is regulated by interaction with Mdm2, the product of a p53-inducible gene. Mdm2-targeted degradation of p53 depends on the interaction between the two proteins and is mediated by the proteasome. We show here that in addition to the N-terminal Mdm2 binding domain, the C terminus of p53 participates in the ability of p53 to be degraded by Mdm2. In contrast, alterations in the central DNA binding domain of p53, which change the conformation of the p53 protein, do not abrogate the sensitivity of the protein to Mdm2-mediated degradation. The importance of the C-terminal oligomerization domain to Mdm2-targeted degradation of p53 is likely to reflect the importance of oligomerization of the full-length p53 protein for interaction with Mdm2, as previously shown in vitro. Interestingly, the extreme C-terminal region of p53, outside the oligomerization domain, was also shown to be necessary for efficient degradation, and deletion of this region stabilized the protein without abrogating its ability to bind to Mdm2. Mdm2-resistant p53 mutants were not further stabilized following DNA damage, supporting a role for Mdm2 as the principal regulator of p53 stability in cells. The extreme C terminus of the p53 protein has previously been shown to contain several regulatory elements, raising the possibility that either allosteric regulation of p53 by this domain or interaction between this region and a third protein plays a role in determining the sensitivity of p53 to Mdm2-directed degradation.  相似文献   

4.
5.
We examined the effect of Mdm2 on regulation of the ApoCIII promoter and its cross-talk with p53 and nuclear receptor SHP. Overexpression of Mdm2 markedly enhanced ApoCIII promoter activity by HNF4α. A direct association of Mdm2 protein with the HNF4α protein was observed by co-immunoprecipitation. Ectopic expression of p53 decreased HNF4α activation of the ApoCIII promoter and antagonized the effect of Mdm2. Co-expression of SHP further strengthened p53 inhibition and abolished Mdm2 activation of the ApoCIII promoter. Mdm2 inhibited p53-mediated enrichment of HNF4α to the ApoCIII promoter while simultaneously reducing p53 binding and increasing recruitment of SHP to the ApoCIII promoter. The results from this study implicate a potentially important function of Mdm2 in regulation of lipoprotein metabolism.  相似文献   

6.
7.
8.
The Mdm2 protein is the major regulator of the tumor suppressor protein p53. We show that the p53 protein associates both with the N-terminal and with the central domain of Mdm2. The central p53-binding site of Mdm2 encompasses amino acids 235-300. Binding of p53 to the central domain is significantly enhanced after phosphorylation of the central domain of Mdm2. The N-terminal and central domains of Mdm2 act synergistically in binding to p53. p53 mutants that have mutations in the tetramerization domain and that fail to oligomerize do not show such an enhancement of binding in the presence of the other binding site.  相似文献   

9.
10.
We have demonstrated previously that the oncoprotein Mdm2 has a ubiquitin ligase activity for the tumor suppressor p53 protein. In the present study, we characterize this ubiquitin ligase activity of Mdm2. We first demonstrate the ubiquitination of several p53 point mutants and deletion mutants by Mdm2. The point mutants, which cannot bind to Mdm2, are not ubiquitinated by Mdm2. The ubiquitination of the C-terminal deletion mutants, which contain so-called Mdm2-binding sites, is markedly decreased, compared with that of wild-type p53. The binding of Mdm2 to p53 is essential for ubiquitination, but p53's tertiary structure and/or C-terminal region may also be important for this reaction. DNA-dependent protein kinase is known to phosphorylate p53 on Mdm2-binding sites, where DNA damage induces phosphorylation, and p53 phosphorylated by this kinase is not a good substrate for Mdm2. This suggests that DNA damage-induced phosphorylation stabilizes p53 by inhibiting its ubiquitination by Mdm2. We further investigated whether the tumor suppressor p19(ARF) affects the ubiquitin ligase activity of Mdm2 for p53. The activity of p19(ARF)-bound Mdm2 was found to be lower than that of free Mdm2, suggesting that p19(ARF) promotes the stabilization of p53 by inactivating Mdm2.  相似文献   

11.
12.
Azurin, a bacterial protein, can be internalized in cancer cells and induce apoptosis. Such anticancer effect is coupled to the formation of a complex with the tumour‐suppressor p53. The mechanism by which azurin stabilizes p53 and the binding sites of their complex are still under investigation. It is also known that the predominant mechanism for p53 down‐regulation implies its association to Mdm2, the main ubiquitin ligase affecting its stability. However, the p53/Mdm2 interaction, occurring at the level of both their N‐terminal domains, has been characterized so far by experiments involving only partial domains of these proteins. The relevance of the p53/Mdm2 complex as a possible target of the anticancer therapies requires a deeper study of this complex as made up of the two entire proteins. Moreover, the apparent antagonist action of azurin against Mdm2, with respect of p53 regulation, might suggest the possibility that azurin binds p53 at the same site of Mdm2, preventing in such a way p53 and Mdm2 from association and thus p53 from degradation. By following the interaction of the two entire proteins by atomic force spectroscopy, we have assessed the formation of a specific complex between p53 and Mdm2. We found for it a binding strength and a dissociation rate constant typical of dynamical protein–protein interactions and we observed that azurin, even if capable to bind p53, does not compete with Mdm2 for the same binding site on p53. The formation of the p53/Mdm2/azurin ternary complex might suggest an alternative anti‐cancer mechanism adopted by azurin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The ARF tumor suppressor is widely regarded as an upstream activator of p53-dependent growth arrest and apoptosis. However, recent findings indicate that ARF can also regulate the cell cycle in the absence of p53. In search of p53-independent ARF targets, we isolated nucleophosmin (NPM/B23), a protein we show is required for proliferation, as a novel ARF binding protein. In response to hyperproliferative signals, ARF is upregulated, resulting in the nucleolar retention of NPM and concomitant cell cycle arrest. The Mdm2 oncogene outcompetes NPM/B23 for ARF binding, and introduction of Mdm2 reverses ARF's p53-independent properties: in vitro, NPM is released from ARF-containing protein complexes, and in vivo S phase progression ensues. ARF induction by oncogenes or replicative senescence does not alter NPM/B23 protein levels but rather prevents its nucleocytoplasmic shuttling without inhibiting rRNA processing. By actively sequestering NPM in the nucleolus, ARF utilizes an additional mechanism of tumor suppression, one that is readily antagonized by Mdm2.  相似文献   

14.
Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function   总被引:15,自引:0,他引:15       下载免费PDF全文
The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.  相似文献   

15.
16.
The binding of Mdm2 to p53 is required for targeting p53 for degradation. p73, however, binds to Mdm2 but is refractory to Mdm2-mediated degradation, indicating that binding to Mdm2 is not sufficient for degradation. By utilizing the structural homology between p53 and p73, we generated p53-p73 chimeras to determine the sequence element unique to p53 essential for regulation of its stability. We found that replacing an element consisting of amino acids 92 to 112 of p53 with the corresponding region of p73 results in a protein that is not degradable by Mdm2. Removal of amino acids 92 to 112 of p53 by deletion also results in a non-Mdm2-degradable protein. Significantly, the finding that swapping this fragment converts p73 from refractory to sensitive to Mdm2-mediated degradation supports the conclusion that the amino acids 92 to 112 of p53 function as a degradation signal. We propose that the presence of an additional protein recognizes the degradation signal and coordinates with Mdm2 to target p53 for degradation. Our finding opens the possibility of searching for the additional protein, which most likely plays a critical role in the regulation of p53 stability and therefore function.  相似文献   

17.
18.
The p53 tumor suppressor pathway is inactivated in most if not all human tumors. In about 50% of the cases this is accomplished directly by gene mutations. The tumors that retain wild type p53 frequently show defects either in effector target genes, or in the expression of p53 regulatory proteins. The Mdm2 protein is generally considered THE master regulator of the p53 tumor suppressor activity. Recently, however, the Mdm2-related protein Mdmx is taking the stage in the p53-Mdm2-Mdmx play. We summarize here observations unambiguously assigning a critical role for the Mdmx protein in the regulation of p53 function during development and tumor formation.  相似文献   

19.
20.
Mdm2, a RING-finger type ubiquitin ligase, is overexpressed in a variety of human cancers. It promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Recently, we reported that Mdm2 degrades retinoblastoma tumor suppressor protein (pRB) via the ubiquitin-proteasome system. In the present study, we assessed the effects of MdmX, a structural homolog of Mdm2, on the Mdm2-mediated ubiquitination of pRB. MdmX is known to negatively regulate p53 function by enhancing the Mdm2-mediated ubiquitination and degradation of p53. Interestingly, MdmX inhibited the Mdm2-mediated pRB ubiquitination. Furthermore, an MdmX siRNA decreased the endogenous pRB level, while MdmX overexpression stimulated pRB functions in cultured cells. Therefore, MdmX may have different roles in the regulation of Mdm2 activity for ubiquitination of pRB and p53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号