首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

2.
3.
4.
Bone marrow stroma contains mesenchymal stem cells (MSC) which are progenitor cells, at least for tissues arising from mesechyma. The study of MSC biology yields controversial data. Therefore further experiments are needed to characterize these cells. The aim of our research was to compare primary cultures and subcultures of stromal precursor cells isolated from rat bone marrow. Long-term cultures of these cells isolated from 5 animals have been obtained. Morphological, immunophenotypic, and functional (capacity to osteogenic differentiation) characteristics of the cells have been investigated. We show that the cell morphology in the cultures is highly heterogenic. Morphological cell types are described. Heterogeneity of stromal cells declines on late passages. Cell cultures isolated from different animals have the same immunophenotypic markers (CD90, CD44, CD54, CD106, CD45, CD11b) but different morphological characteristics and a different capacity to osteogenic differentiation during long-term cultivation. The data show that more specific markers and functional tests should be applied to identify MSC.  相似文献   

5.
The aim of the present study was to evaluate the potential of intraoral harvested alveolar bone as an alternative source of multipotent mesenchymal stromal cells for future applications in oral and maxillofacial tissue engineering. Explant cultures were established from 20 alveolar bone samples harvested from the oblique line immediately before wisdom tooth removal. Morphology and proliferation characteristics of the in vitro expanded cells, referred to as human alveolar bone-derived cells (hABDCs), were studied using phase-contrast microscopy. Immunocytochemical analysis of their surface marker expression was conducted using monoclonal antibodies defining mesenchymal stromal cells. To evaluate their multilineage differentiation potential, hABDCs were induced to differentiate along the osteogenic, adipogenic, and chondrogenic lineage and compared to bone marrow mesenchymal stromal cells (hBMSCs) on mRNA and protein levels applying RT-PCR and cytochemical staining methods. hABDCs showed typical morphological characteristics comparable to those of hBMSCs such as being mononuclear, fibroblast-like, spindle-shaped, and plastic adherent. Immunophenotypically, cells were positive for CD105, CD90, and CD73 while negative for CD45, CD34, CD14, CD79α, and HLA-DR surface molecules, indicating an antigen expression pattern considered typical for multipotent mesenchymal stromal cells. As evidenced by RT-PCR and cytochemistry, hABDCs showed multilineage differentiation and similar chondrogenic and osteogenic differentiation potentials when compared to hBMSCs. Our findings demonstrate that human alveolar bone contains mesenchymal progenitor cells that can be isolated and expanded in vitro and are capable of trilineage differentiation, providing a reservoir of multipotent mesenchymal cells from an easily accessible tissue source.  相似文献   

6.
Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.  相似文献   

7.
Several studies have shown the presence of fibroblast-like cells in the stromal fraction of different tissues with a high proliferative and differentiation potential. Platelet alpha granules contain growth factors released into the environment during activation. The effects of different supplements for culture medium (human serum, bovine serum and platelet lysate) on cultured human fibroblast-like cells from bone marrow, adipose tissue, trabecular bone and dental pulp have been compared. Expression of typical stromal and hematopoietic markers was analyzed and proliferative rates were determined. Flow cytofluorometry showed a homogenous pattern in serial-passaged cells, with a high level of stromal cell-associated markers (CD13, CD90, CD105). The presence of platelet lysate in culture media increased the number of cell generations obtained regardless of cell source. This effect was serum-dependent. Cell-based therapies can benefit by the use of products from human origin for “ex vivo” expansion of multipotent cells.  相似文献   

8.
Background aimsMesenchymal stromal cells (MSC) exhibit non-specific hematopoietic cell and/or stromal cell markers (e.g. CD73, CD105 and CD166) that have been used to identify MSC by flow cytometry. Because a neural glial antigen, NG2 (a progenitor cell marker in the central nervous system), is expressed by several tissue cells originating in the mesenchyme but not hematopoietic cells, it might be useful for isolating and identifying MSC. We investigated NG2 expression on culture-expanded MSC by flow cytometry.MethodsHuman bone marrow (BM) samples taken from 12 donors were cultured for MSC to be used in up to nine serial passages. Using flow cytometry, the neural glial antigen NG2 and commonly used MSC markers CD73, CD105 and CD166, were analyzed on the surface of culture-expanded MSC. The multipotential differentiation of the MSC was examined by adipogenic and osteogenic induction.ResultsThe percentage of cells positive for NG2 was similar to the percentages of cells positive for CD73, CD105 and CD166 in all passages of BM samples. The mean fluorescent intensities of NG2 did not change with culture passage. The MSC was successfully differentiated into adipogenic and osteogenic lines. The cells showed no karyotypic abnormalities.ConclusionsNG2 seems to be a promising marker for investigating the biology of MSC.  相似文献   

9.
Despite significant progress in our understanding of mesenchymal stem cell (MSC) biology during recent years, much of the information is based on experiments using in vitro culture-selected stromal progenitor cells. Therefore, the natural cellular identity of MSCs remains poorly defined. Numerous studies have reported that CD44 expression is one of the characteristics of MSCs in both humans and mice; however, we here have prospectively isolated bone marrow stromal cell subsets from both human and mouse bone marrow by flow cytometry and characterized them by gene expression analysis and function assays. Our data provide functional and molecular evidence suggesting that primary mesenchymal stem and progenitor cells of bone marrow reside in the CD44(-) cell fraction in both mice and humans. The finding that these CD44(-) cells acquire CD44 expression after in vitro culture provides an explanation for the previous misconceptions concerning CD44 expression on MSCs. In addition, the other previous reported MSC markers, including CD73, CD146, CD271, and CD106/VCAM1, are also differentially expressed on those two cell types. Our microarray data revealed a distinct gene expression profile of the freshly isolated CD44(-) cells and the cultured MSCs generated from these cells. Thus, we conclude that bone marrow MSCs physiologically lack expression of CD44, highlighting the natural phenotype of MSCs and opening new possibilities to prospectively isolate MSCs from the bone marrow.  相似文献   

10.
Bone marrow is an important source of mesenchymal stem cells (MSCs), and a promising tool for cytotherapy. MSC utilization is limited by low cell yields obtained under standard isolation protocols. Herein, used bone marrow collection sets were evaluated as a valuable source of MSCs. Adherent cells washed from the collection sets were examined for widely accepted criteria defining MSCs. Significant numbers of cells (median 9million per set in passage 1) with colony-forming activity and high proliferative potential at low seeding densities were obtained. These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29) and negative for most haematopoietic and endothelial cell markers (CD45, CD34, CD11a, CD235a, HLA-DR, CD144). The cells were capable of differentiation along adipogenic, osteogenic and chondrogenic pathways. Washing out bone marrow collection sets may constitute a highly ethical source of MSCs for research purposes and may be utilized also in clinical applications.  相似文献   

11.
A comparative study was performed of dense 5-hour cultures of rat hepatocytes and equal-density cultures of mesenchymal stromal cells (MSC) isolated from human adipose tissue of rat bone marrow. The cells were grown on collagen-coated class slides in serum-free medium. Unlike in hepatocytes, no rhythm of protein synthesis was initially revealed in MSC, but such a rhythm manifested itself when the culture medium was supplemented with melatonin (2 nM, 5 min). The results of experiments with cytoplasmic calcium chelator BAPTA-AM and protein kinase inhibitor H7 indicate that the mechanism of protein synthesis synchronization in MSC consists in calcium-dependent phosphorylation of cell proteins.  相似文献   

12.
Mesenchymal stem cells (MSCs) are specific cells capable of long-term proliferation and differentiation into various stromal tissue cell types. The state of MSCs depends on the cellular microenvironment and several soluble factors. We proposed that gravity could, in addition, influence MSCs features. To prove this hypothesis, we studied the effects of prolonged clinorotation on cultured human MSC morphology, proliferation rate and expression of specific cellular markers. Human bone marrow-derived MSCs were isolated by Histopaque-1.077 density centrifugation and cultured in DMEM-LG with 10% FBS. MSC cultures were composed of fibroblastoid cells negative for hemopoietic cell markers and positive for ASMA, collagen-1, fibronectin, CD54, CD105 and CD106. Cells were exposed to clinorotation from 1 hour to 10 days. It was shown that the proliferative rate was decreased in experimental cultures as compared to cells growing in normal conditions. Clinorotated MSCs appeared more flattened and reached confluence at a lower cell density. The obtained results suggest that cultured human mesenchymal stem cells sense the changes in gravity vector and may respond to microgravity by altered functional activity.  相似文献   

13.
The ability of stem/progenitor cells to migrate and engraft into host tissues is key to their potential use in gene and cell therapy. Among the cells of interest are the adherent cells from bone marrow, referred to as mesenchymal stem cells or multipotent stromal cells (MSC). Since the bone marrow environment is hypoxic, with oxygen tensions ranging from 1% to 7%, we decided to test whether hypoxia can upregulate chemokine receptors and enhance the ability of human MSCs to engraft in vivo. Short-term exposure of MSCs to 1% oxygen increased expression of the chemokine receptors CX3CR1and CXCR4, both as mRNA and as protein. After 1-day exposure to low oxygen, MSCs increased in vitro migration in response to the fractalkine and SDF-1alpha in a dose dependent manner. Blocking antibodies for the chemokine receptors significantly decreased the migration. Xenotypic grafting into early chick embryos demonstrated cells from hypoxic cultures engrafted more efficiently than cells from normoxic cultures and generated a variety of cell types in host tissues. The results suggest that short-term culture of MSCs under hypoxic conditions may provide a general method of enhancing their engraftment in vivo into a variety of tissues.  相似文献   

14.
Mesenchymal stem cells are multipotent cells resident in the bone marrow throughout adulthood which have the capacity to differentiate into cartilage, bone, fat, muscle, and tendon. A number of monoclonal antibodies raised against human MSCs have been shown to react with surface antigens on these cells in vitro. A protein of molecular mass 92 kDa was immunoprecipitated using the SH-2 monoclonal antibody. This was purified and identified by peptide sequencing analysis and mass spectrometry as endoglin (CD105), the TGF-beta receptor III present on endothelial cells, syncytiotrophoblasts, macrophages, and connective tissue stromal cells. Endoglin on MSCs potentially plays a role in TGF-beta signalling in the control of chondrogenic differentiation of MSCs and also in mediating interactions between MSCs and haematopoietic cells in the bone marrow microenvironment.  相似文献   

15.
Human mesenchymal stem cells (MSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. This differentiation potential makes MSC excellent candidates for cell-based tissue engineering. In this study, we have examined phenotypes and gene expression profile of the human adipose tissue-derived stromal cells (ATSC) in the undifferentiated states, and compared with that of bone marrow stromal cells (BMSC). ATSC were enzymatically released from adipose tissues from adult human donors and were expanded in monolayer with serial passages at confluence. BMSC were harvested from the metaphysis of adult human femur. Flowcytometric analysis showed that ATSC have a marker expression that is similar to that of BMSC. ATSC expressed CD29, CD44, CD90, CD105 and were absent for HLA-DR and c-kit expression. Under appropriate culture conditions, MSC were induced to differentiate to the osteoblast, adipocyte, and chondrogenic lineages. ATSC were superior to BMSC in respect to maintenance of proliferating ability, and microarray analysis of gene expression revealed differentially expressed genes between ATSC and BMSC. The proliferating ability and differentiation potential of ATSC were variable according to the culture condition. The similarities of the phenotypes and the gene expression profiles between ATSC and BMSC could have broad implications for human tissue engineering.  相似文献   

16.
Wu X  Ren J  Li J 《Cytotherapy》2012,14(5):555-562
The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.  相似文献   

17.

Introduction  

Mesenchymal stem cells (MSC) are highly attractive for use in cartilage regeneration. To date, MSC are usually recruited from subchondral bone marrow using microfracture. Recent data suggest that isolated cells from adult human articular cartilage, which express the combination of the cell-surface markers CD105 and CD166, are multi-potent mesenchymal progenitor cells (MPC) with characteristics similar to MSC. MPC within the cartilage matrix, the target of tissue regeneration, may provide the basis for in situ regeneration of focal cartilage defects. However, there is only limited information concerning the presence/abundance of CD105+/CD166+ MPC in human articular cartilage. The present study therefore assessed the relative percentage and particularly the zonal distribution of cartilage MPC using the markers CD105/CD166.  相似文献   

18.
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated.  相似文献   

19.
Although ongoing clinical trials utilize systemic administration of bone-marrow mesenchymal stromal cells (BM-MSCs) in Crohn's disease (CD), nothing is known about the presence and the function of mesenchymal stromal cells (MSCs) in the normal human bowel. MSCs are bone marrow (BM) multipotent cells supporting hematopoiesis with the potential to differentiate into multiple skeletal phenotypes. A recently identified new marker, CD146, allowing to prospectively isolate MSCs from BM, renders also possible their identification in different tissues. In order to elucidate the presence and functional role of MSCs in human bowel we analyzed normal adult colon sections and isolated MSCs from them. In colon (C) sections, resident MSCs form a net enveloping crypts in lamina propria, coinciding with structural myofibroblasts or interstitial stromal cells. Nine sub-clonal CD146(+) MSC lines were derived and characterized from colon biopsies, in addition to MSC lines from five other human tissues. In spite of a phenotype qualitative identity between the BM- and C-MSC populations, they were discriminated and categorized. Similarities between C-MSC and BM-MSCs are represented by: Osteogenic differentiation, hematopoietic supporting activity, immune-modulation, and surface-antigen qualitative expression. The differences between these populations are: C-MSCs mean intensity expression is lower for CD13, CD29, and CD49c surface-antigens, proliferative rate faster, life-span shorter, chondrogenic differentiation rare, and adipogenic differentiation completely blocked. Briefly, BM-MSCs, deserve the rank of progenitors, whereas C-MSCs belong to the restricted precursor hierarchy. The presence and functional role of MSCs in human colon provide a rationale for BM-MSC replacement therapy in CD, where resident bowel MSCs might be exhausted or diverted from their physiological functions.  相似文献   

20.
Background aimsMesenchymal stromal/stem cells (MSCs) can be isolated from human bone marrow (BM), expanded ex vivo and identified via numerous surface antigens. Despite the importance of these cells in regenerative therapy programs, it is unclear whether the cell membrane signature defining MSC preparations ex vivo is determined during culture or may reflect an in vivo counterpart. BM-MSC phenotype in vivo requires further investigation.MethodsTo characterize cells in their natural BM environment, we performed multi-parametric immunohistochemistry on trabecular bone biopsy specimens from multiple donors and described cells by different morphology and micro-anatomic localization in relationship to a precise pattern of MSC antigen expression.ResultsMicroscopically examined high-power field marrow sections revealed an overlapping in vivo expression of antigens characterizing ex vivo expanded BM-MSCs, including CD10, CD73, CD140b, CD146, GD2 and CD271. Expanding this panel to proteins associated with pluripotency, such as Oct4, Nanog and SSEA-4, we were able to identify different cellular populations in the human trabecular bone and BM expressing different progenitor cell markers.ConclusionsTargeting several multipotency and pluripotency markers, we found that the BM contains identifiable and distinct progenitor cells further justifying their introduction for a wide range of applications in regenerative medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号