首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of liming on the flow of recently photosynthesized carbon to rhizosphere soil was studied using 13CO2 pulse labelling, in an upland grassland ecosystem in Scotland. The use of 13C enabled detection, in the field, of the effect of a 4‐year liming period of selected soil plots on C allocation from plant biomass to soil, in comparison with unlimed plots. Photosynthetic rates and carbon turnover were higher in plants grown in limed soils than in those from unlimed plots. Higher δ13C‰ values were detected in shoots from limed plants than in those from unlimed plants in samples clipped within 15 days of the end of pulse labelling. Analysis of the aboveground plant production corresponding to the 4‐year period of liming indicated that the standing biomass was higher in plots that received lime. Lower δ13C‰ values in limed roots compared with unlimed roots were found, whereas no significant difference was detected between soil samples. Extrapolation of our results indicated that more C has been lost through the soil than has been gained via photosynthetic assimilation because of pasture liming in Scotland during the period 1990–1998. However, the uncertainty associated with such extrapolation based on this single study is high and these estimates are provided only to set our findings in the broader context of national soil carbon emissions.  相似文献   

2.
Over a period of three years (1990–1992) microbial biomass-C (Cmic), CO2 evolution, the Cmic:Corg ratio and the metabolic quotient for CO2 (qCO2) were determined in a Norway spruce stand (Höglwald) with experimentally acid-irrigated and limed plots since 1984. A clear relationship between soil pH and the level of microbial biomass-(Cmic) was noted, Cmic increasing with increasing soil pH in Oh or Ah horizons. More microbial biomass-C per unit C{org} (Cmic:Corg ratio) was detected in limed plots with elevated pH of Oh or Ah horizons as compared to unlimed plots with almost 3 times more Cmic per unit Corg in the limed Oh horizon. Differences here are significant at least at the p=0.05 level. The positive effects of liming (higher pH) on the Cmic:Corg ratio was more pronounced in the upper horizon (Oh)). The total CO2 evolution rate of unlimed plots was only half of that noted for limed plots which corresponded to the low microbial biomass levels of unlimed plots. The specific respiratory activity, qCO2, was similar and not significantly different between the unlimed control plot and the limed plot.Acid irrigation of plots with already low pH did not significantly affect the level of microbial biomass, the Cmic:Corg ratio or qCO2. An elevated qCO2 could be seen, however, for the limed + acid irrigated plot. The biomass seemed extremely stressed, showing with 3.8 g CO2-C mg-1 Cmic h-1 (Oh) the highest qCO2 value of all treatments. This was interpreted as a reflection of the continuous adaptation processes to the H+ ions by the microflora. The negative effect of acid irrigation of limed plots was also manifested in a decreased Cmic:Corg ratio.  相似文献   

3.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Emissions of CO2 from soils make up one of the largest fluxes in the global C cycle, thus small changes in soil respiration may have large impacts on global C cycling. Anthropogenic additions of CO2 to the atmosphere are expected to alter soil carbon cycling, an important component of the global carbon budget. As part of the Duke Forest Free-Air CO2 Enrichment (FACE) experiment, we examined how forest growth at elevated (+200 ppmv) atmospheric CO2 concentration affects soil CO2 dynamics over 7 years of continuous enrichment. Soil respiration, soil CO2 concentrations, and the isotopic signature of soil CO2 were measured monthly throughout the 7 years of treatment. Estimated annual rates of soil CO2 efflux have been significantly higher in the elevated plots in every year of the study, but over the last 5 years the magnitude of the CO2 enrichment effect on soil CO2 efflux has declined. Gas well samples indicate that over 7 years fumigation has led to sustained increases in soil CO2 concentrations and depletion in the δ13C of soil CO2 at all but the shallowest soil depths.  相似文献   

5.
6.
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.  相似文献   

7.
Carbon dioxide is released from the soil to the atmosphere in heterotrophic respiration when the dead organic matter is used for substrates for soil micro-organisms and soil animals. Respiration of roots and mycorrhiza is another major source of carbon dioxide in soil CO2 efflux. The partitioning of these two fluxes is essential for understanding the carbon balance of forest ecosystems and for modelling the carbon cycle within these ecosystems. In this study, we determined the carbon balance of three common tree species in boreal forest zone, Scots pine, Norway spruce, and Silver birch with gas exchange measurements conducted in laboratory in controlled temperature and light conditions. We also studied the allocation pattern of assimilated carbon with 14C pulse labelling experiment. The photosynthetic light responses of the tree species were substantially different. The maximum photosynthetic capacity (P max) was 2.21 μg CO2 s−1 g−1 in Scots pine, 1.22 μg CO2 s−1 g−1 in Norway spruce and 3.01 μg CO2 s−1 g−1 in Silver birch seedlings. According to the pulse labelling experiments, 43–75% of the assimilated carbon remained in the aboveground parts of the seedlings. The amount of carbon allocated to root and rhizosphere respiration was about 9–26%, and the amount of carbon allocated to root and ectomycorrhizal biomass about 13–21% of the total assimilated CO2. The 14CO2 pulse reached the root system within few hours after the labelling and most of the pulse had passed the root system after 48 h. The transport rate of carbon from shoot to roots was fastest in Silver birch seedlings.  相似文献   

8.
The application of calcium‐ and magnesium‐rich materials to soil, known as liming, has long been a foundation of many agro‐ecosystems worldwide because of its role in counteracting soil acidity. Although liming contributes to increased rates of respiration from soil thereby potentially reducing soils ability to act as a CO2 sink, the long‐term effects of liming on soil organic carbon (Corg) sequestration are largely unknown. Here, using data spanning 129 years of the Park Grass Experiment at Rothamsted (UK), we show net Corg sequestration measured in the 0–23 cm layer at different time intervals since 1876 was 2–20 times greater in limed than in unlimed soils. The main cause of this large Corg accrual was greater biological activity in limed soils, which despite increasing soil respiration rates, led to plant C inputs being processed and incorporated into resistant soil organo‐mineral pools. Limed organo‐mineral soils showed: (1) greater Corg content for similar plant productivity levels (i.e. hay yields); (2) higher 14C incorporation after 1950s atomic bomb testing and (3) lower C : N ratios than unlimed organo‐mineral soils, which also indicate higher microbial processing of plant C. Our results show that greater Corg sequestration in limed soils strongly reduced the global warming potential of long‐term liming to permanent grassland suggesting the net contribution of agricultural liming to global warming could be lower than previously estimated. Our study demonstrates that liming might prove to be an effective mitigation strategy, especially because liming applications can be associated with a reduced use of nitrogen fertilizer which is a key cause for increased greenhouse gas emissions from agro‐ecosystems.  相似文献   

9.
The Maricopa cotton and wheat FACE (free-air CO2 enrichment) experiments offer propitious opportunity to quantify carbon turnover. The commercial CO2 (% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaW% baaSqabeaacaaIXaGaaG4maaaakiaaboeacqGHijYUcqGHsislcaaI% ZaGaaG4naiaacwcaliaad+gaaaa!3FCB!\[\delta ^{13} {\text{C}} \approx - 37\% o\]) used to elevate CO2 concentration in field plots provided a strongly 13C-depleted tracer. Soil CO2 and 13C of soil organic carbon (SOC) in CO2-enriched and Control plots were measured between the final cotton FACE project (October 1991) and the end of the second wheat experiment (June 1994). The initial 13C-depletion in SOC of cotton FACE plots (measured by the difference in 13C between FACE and Control plots) persisted at the same level (1.9) 1.5 years after the experiment ended. A similar depletion was observed in soil CO2 evolved in the same plots, indicating ongoing decomposition of the new SOC. The SOC 13C of wheat plots before and after two growing seasons showed increasing 13C-depletion in FACE relative to Control. Isotopic mass balance was consistent with 5–6% new carbon input from the two wheat crops. This is lower than the 12–13% calculated for FACE cotton and perhaps a consequence of the larger root system of cotton or the 3-year duration of the cotton experiments versus 2 years for the wheat.  相似文献   

10.
Kuzyakov  Y.  Kretzschmar  A.  Stahr  K. 《Plant and Soil》1999,213(1-2):127-136
Carbon rhizodeposition and root respiration during eight development stages of Lolium perenne were studied on a loamy Gleyic Cambisol by 14CO2 pulse labelling of shoots in a two compartment chamber under controlled laboratory conditions. Total 14CO2 efflux from the soil (root respiration, microbial respiration of exudates and dead roots) in the first 8 days after 14C pulse labelling decreased during plant development from 14 to 6.5% of the total 14C input. Root respiration accounted for was between 1.5 and 6.5% while microbial respiration of easily available rhizodeposits and dead root remains were between 2 and 8% of the 14C input. Both respiration processes were found to decline during plant development, but only the decrease in root respiration was significant. The average contribution of root respiration to total 14CO2 efflux from the soil was approximately 41%. Close correlation was found between cumulative 14CO2 efflux from the soil and the time when maximum 14CO2 efflux occurred (r=0.97). The average total of CO2 Defflux from the soil with Lolium perenne was approximately 21 μg C-CO2 d−1 g−1. It increased slightly during plant development. The contribution of plant roots to total CO2 efflux from the soil, calculated as the remainder from respiration of bare soil, was about 51%. The total 14C content after 8 days in the soil with roots ranged from 8.2 to 27.7% of assimilated carbon. This corresponds to an underground carbon transfer by Lolium perenne of 6–10 g C m−2 at the beginning of the growth period and 50–65 g C m−2 towards the end of the growth period. The conventional root washing procedure was found to be inadequate for the determination of total carbon input in the soil because 90% of the young fine roots can be lost. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Kuzyakov  Y.  Domanski  G. 《Plant and Soil》2002,239(1):87-102
A model for rhizodeposition and root respiration was developed and parameterised based on 14C pulse labelling of Lolium perenne. The plants were grown in a two-compartment chamber on a loamy Haplic Luvisol under controlled laboratory conditions. The dynamics of 14CO2 efflux from the soil and 14C content in shoots, roots, micro-organisms, dissolved organic carbon (DOC) and soil were measured during the first 11 days after labelling. Modelled parameters were estimated by fitting on measured 14C dynamics in the different pools. The model and the measured 14C dynamics in all pools corresponded well (r 2=0.977). The model describes well 14CO2 efflux from the soil and 14C dynamics in shoots, roots and soil, but predicts unsatisfactorily the 14C content in micro-organisms and DOC. The model also allows for division of the total 14CO2 efflux from the soil in 14CO2 derived from root respiration and 14CO2 derived from rhizomicrobial respiration by use of exudates and root residues. Root respiration and rhizomicrobial respiration amounted for 7.6% and 6.0% of total assimilated C, respectively, which accounts for 56% and 44% of root-derived 14CO2 efflux from the soil planted with 43-day-old Lolium perenne, respectively. The sensitivity analysis has shown that root respiration rate affected the curve of 14CO2 efflux from the soil mainly during the first day after labelling. The changes in the exudation rate influenced the 14CO2 efflux later than first 24 h after labelling.  相似文献   

12.
Pregitzer K  Loya W  Kubiske M  Zak D 《Oecologia》2006,148(3):503-516
The aspen free-air CO2 and O3 enrichment (FACTS II–FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3) in a replicated, factorial, field experiment. Soil respiration is the second largest flux of carbon (C) in these ecosystems, and the objective of this study was to understand how soil respiration responded to the experimental treatments as these fast-growing stands of pure aspen and birch + aspen approached maximum leaf area. Rates of soil respiration were typically lowest in the elevated O3 treatment. Elevated CO2 significantly stimulated soil respiration (8–26%) compared to the control treatment in both community types over all three growing seasons. In years 6–7 of the experiment, the greatest rates of soil respiration occurred in the interaction treatment (CO2 + O3), and rates of soil respiration were 15–25% greater in this treatment than in the elevated CO2 treatment, depending on year and community type. Two of the treatments, elevated CO2 and elevated CO2 + O3, were fumigated with 13C-depleted CO2, and in these two treatments we used standard isotope mixing models to understand the proportions of new and old C in soil respiration. During the peak of the growing season, C fixed since the initiation of the experiment in 1998 (new C) accounted for 60–80% of total soil respiration. The isotope measurements independently confirmed that more new C was respired from the interaction treatment compared to the elevated CO2 treatment. A period of low soil moisture late in the 2003 growing season resulted in soil respiration with an isotopic signature 4–6‰ enriched in 13C compared to sample dates when the percentage soil moisture was higher. In 2004, an extended period of low soil moisture during August and early September, punctuated by a significant rainfall event, resulted in soil respiration that was temporarily 4–6‰ more depleted in 13C. Up to 50% of the Earth’s forests will see elevated concentrations of both CO2 and O3 in the coming decades and these interacting atmospheric trace gases stimulated soil respiration in this study.  相似文献   

13.
M. Werth  Y. Kuzyakov 《Plant and Soil》2006,284(1-2):319-333
Coupling 13C natural abundance and 14C pulse labelling enabled us to investigate the dependence of 13C fractionation on assimilate partitioning between shoots, roots, exudates, and CO2 respired by maize roots. The amount of recently assimilated C in these four pools was controlled by three levels of nutrient supply: full nutrient supply (NS), 10 times diluted nutrient supply (DNS), and deionised water (DW). After pulse labelling of maize shoots in a 14CO2 atmosphere, 14C was traced to determine the amounts of recently assimilated C in the four pools and the δ13C values of the four pools were measured. Increasing amounts of recently assimilated C in the roots (from 8% to 10% of recovered 14C in NS and DNS treatments) led to a 0.3‰ 13C enrichment from NS to DNS treatments. A further increase of C allocation in the roots (from 10% to 13% of recovered 14C in DNS and DW treatments) resulted in an additional enrichment of the roots from DNS to DW treatments by 0.3‰. These findings support the hypothesis that 13C enrichment in a pool increases with an increasing amount of C transferred into that pool. δ13C of CO2 evolved by root respiration was similar to that of the roots in DNS and DW treatments. However, if the amount of recently assimilated C in root respiration was reduced (NS treatment), the respired CO2 became 0.7‰ 13C depleted compared to roots. Increasing amounts of recently assimilated C in the CO2 from NS via DNS to DW treatments resulted in a 1.6‰ δ13C increase of root respired CO2 from NS to DW treatments. Thus, for both pools, i.e. roots and root respiration, increasing amounts of recently assimilated C in the pool led to a δ13C increase. In DW and DNS plants there was no 13C fractionation between roots and exudates. However, high nutrient supply decreased the amount of recently assimilated C in exudates compared to the other two treatments and led to a 5.3‰ 13C enrichment in exudates compared to roots. We conclude that 13C discrimination between plant pools and within processes such as exudation and root respiration is not constant but strongly depends on the amount of C in the respective pool and on partitioning of recently assimilated C between plant pools. Section Editor: H. Lambers  相似文献   

14.
Rhizodeposition, i.e. the release of carbon into the soil by growing roots, is an important part of the terrestrial carbon cycle. However thein situ nature and dynamics of root-derived carbon in the soil are still poorly understood. Here we made an investigation of the latter in laboratory experiments using13CO2 pulse chase labelling of wheat (Triticum aestivum L.). We analyzed the kinetics of13C-labelled carbon and more specially13C carbohydrates in the rhizosphere. Wheat seedlings-soil mesocosms were exposed to13CO2 for 5 hours in controlled chambers and sampled repeatedly during two weeks for13C/C analysis of organic carbon. After a two-step separation of the soil from the roots, the amount of total organic13C was determined by isotope ratio mass spectrometry as well as the amounts of13C in arabinose, fructose, fucose, glucose, galactose, mannose, rhamnose and xylose. The amount and isotopic ratio of monosaccharides were obtained by capillary gas chromatography coupled with isotope ratio mass spectrometry (GC/C/IRMS) after trimethyl-silyl derivatization. Two fractions were analyzed : total (hydrolysable) and soluble monomeric (water extractable) soil sugars. The amount of organic13C found in the soil, expressed as a percentage of the total photosynthetically fixed13C at the end of the labelling period, reached 16% in the day following labelling and stabilised at 9% after one week. We concluded that glucose under the form of polymers was the dominant moietie of rhizodeposits. Soluble glucose and fructose were also present. But after 2 days, these soluble sugars had disappeared. Forty percent of the root-derived carbon was in the form of neutral sugars, and exhibited a time-increasing signature of microbial sugars. The composition of rhizospheric sugars rapidly tended towards that of bulk soil organic matter.  相似文献   

15.
CO2 applied for Free-Air CO2 Enrichment (FACE) experiments is strongly depleted in 13C and thus provides an opportunity to study C turnover in soil organic matter (SOM) based on its δ 13C value. Simultaneous use of 15N labeled fertilizers allows N turnover to be studied. Various SOM fractionation approaches (fractionation by density, particle size, chemical extractability etc.) have been applied to estimate C and N turnover rates in SOM pools. The thermal stability of SOM coupled with C and N isotopic analyses has never been studied in experiments with FACE. We tested the hypothesis that the mean residence time (MRT) of SOM pools is inversely proportional to its thermal stability. Soil samples from FACE plots under ambient (380 ppm) and elevated CO2 (540 ppm; for 3 years) treatments were analyzed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). Based on differential weight losses (TG) and energy release or consumption (DSC), five SOM pools were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ 13C and δ 15N by IRMS. Energy consumption and mass losses in the temperature range 20–200°C were mainly connected with water volatilization. The maximum weight losses occurred from 200–310°C. This pool contained the largest amount of carbon: 61% of the total soil organic carbon in soil under ambient treatment and 63% in soil under elevated CO2, respectively. δ 13C values of SOM pools under elevated CO2 treatment showed an increase from −34.3‰ of the pool decomposed between 20–200°C to −18.1‰ above 480°C. The incorporation of new C and N into SOM pools was not inversely proportional to its thermal stability. SOM pools that decomposed between 20–200 and 200–310°C contained 2 and 3% of the new C, with a MRT of 149 and 92 years, respectively. The pool decomposed between 310–400°C contained the largest proportion of new C (22%), with a MRT of 12 years. The amount of fertilizer-derived N after 2 years of application in ambient and elevated CO2 treatments was not significantly different in SOM pools decomposed up to 480°C having MRT of about 60 years. In contrast, the pool decomposed above 480°C contained only 0.5% of new N, with a MRT of more than 400 years in soils under both treatments. Thus, the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. Responsible Editor: Bernard Nicolardot.  相似文献   

16.
Loiseau  P.  Soussana  J.F. 《Plant and Soil》1999,210(2):233-247
The effects of elevated [CO2] (700 μl l-1 CO2) and temperature increase (+3 °C) on carbon turnover in grassland soils were studied during 2.5 years at two N fertiliser supplies (160 and 530 kg N ha-1 y-1) in an experiment with well-established ryegrass swards (Lolium perenne) supplied with the same amounts of irrigation water. During the growing season, swards from the control climate (350 μl l-1 [CO2] at outdoor air temperature) were pulse labelled by the addition of 13CO2. The elevated [CO2] treatments were continuously labelled by the addition of fossil-fuel derived CO2 (13 C of -40 to -50 ‰). Prior to the start of the experimental treatments, the carbon accumulated in the plant parts and in the soil macro-organic matter (‘old’ C) was at −32‰. During the experiment, the carbon fixed in the plant material (‘new’ C) was at −14 and −54‰ in the ambient and elevated [CO2] treatments, respectively. During the experiment, the 13C isotopic mass balance method was used to calculate, for the top soil (0–15 cm), the carbon turnover in the stubble and roots and in the soil macro-organic matter above 200 μ (MOM). Elevated [CO2] stimulated the turnover of organic carbon in the roots and stubble and in the MOM at N+, but not at N−. At the high N supply, the mean replacement time of ‘old’ C by ‘new’ C declined in elevated, compared to ambient [CO2], from 18 to 7 months for the roots and stubble and from 25 to 17 months for the MOM. This resulted from increased rates of ‘new’ C accumulation and of ‘old’ C decay. By contrast, at the low N supply, despite an increase in the rate of accumulation of ‘new’ C, the soil C pools did not turnover faster in elevated [CO2], as the rate of ‘old’ C decomposition was reduced. A 3 °C temperature increase in elevated [CO2] decreased the input of fresh C to the roots and stubble and enhanced significantly the exponential rate for the ‘old’ C decomposition in the roots and stubble. An increased fertiliser N supply reduced the carbon turnover in the roots and stubble and in the MOM, in ambient but not in elevated [CO2]. The respective roles for carbon turnover in the coarse soil OM fractions, of the C:N ratio of the litter, of the inorganic N availability and of a possible priming effect between C-substrates are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
This study examines the effect of elevated atmospheric carbon dioxide [CO2] (+340 ppm, 13C-depleted) and/or elevated air temperature (2.8–3.5°C) on the rate and δ13C of soil respiration. The study was conducted in a boreal Norway spruce forest using temperature-controlled whole-tree chambers and 13C as a marker for root respiration. The δ13C of needle carbohydrates was followed after the onset of the CO2 treatment in August 2001 and during a 2.5-week period in the summer of 2002. Averaged over the growing seasons of 2002 and 2003, we observed a 48% and 62% increase, respectively, in soil respiration in response to elevated [CO2], but no response to elevated air temperature. The percentage increase in response to elevated [CO2] varied seasonally (between 10% and 190% relative to the control), but the absolute increase varied less (39 ± 11 mg C m−2 h−1; mean ± SD). Data on δ13C of soil respiration indicate that this increase in soil respiration rate resulted from increased root/rhizosphere respiration of recently fixed carbon. Our results support the hypothesis that root/rhizosphere respiration is sensitive to variation in substrate availability.  相似文献   

18.
Weixin Cheng 《Plant and Soil》1996,183(2):263-268
Due to the limitations in methodology it has been a difficult task to measure rhizosphere respiration and original soil carbon decomposition under the influence of living roots. 14C-labeling has been widely used for this purpose in spite of numerous problems associated with the labeling method. In this paper, a natural 13C method was used to measure rhizosphere respiration and original soil carbon decomposition in a short-term growth chamber experiment. The main objective of the experiment was to validate a key assumption of this method: the 13C value of the roots represents the 13C value of the rhizosphere respired CO2. Results from plants grown in inoculated carbon-free medium indicated that this assumption was valid. This natural 13C method was demonstrated to be advantageous for studying rhizosphere respiration and the effects of living roots on original soil carbon decomposition.  相似文献   

19.
A preliminary study was conducted using the stable isotope 13C to pulse label the cover crop phacelia (Phacelia tanacetifolia) to examine its decomposition in soil, under field conditions. Plants were grown, in pots, in the greenhouse and after four weeks of growth were labelled with 13CO2 six times, at 1–2 week intervals. A single chamber was placed over the pots, and 13CO2 was generated, inside the chamber, by injecting lactic acid into sodium carbonate (99 atom % 13C). For calculating the quantity of Na2CO3 required, a target enrichment of 5 atom% 13C within the shoots of plants, assuming no respiration losses, was used. When harvested, at flowering, the mean enrichment of the shoot material was 3.0466 atom% 13C, or 1.9654 atom% excess 13C. To assess uniformity of labelling within plants, the shoot of a single plant was divided into leaves and stem from three sections of equal length. Ninety-three percent of this plant's dry matter had a 13C enrichment within 20 % of the weighted mean. At a field site with sandy soil, 13C labelled shoot and root material were combined and mixed with soil (0–15 cm). The soil was sampled 16 and 179 days later to determine the recovery of the added excess 13C in soil total C. The recoveries in soil (0–30 cm) were, respectively, 78 and 40 % at 16 and 179 days; there was appreciable variation associated with the recovery data from day 16, much less so at day 179. Methodological procedures for (i) enhancing the uniformity of labelling with 13C within plants, and (ii) minimising variability in the recovery of 13C from soil are suggested. ei]R Merckx  相似文献   

20.
Climate warming has been suggested to impact high latitude grasslands severely, potentially causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts belowground C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. On a 10-year geothermal warming gradient in Iceland, we studied the effects of soil warming and N addition on CO2 fluxes and the fate of recently photosynthesized C through CO2 flux measurements and a 13CO2 pulse-labeling experiment. Under warming, ecosystem respiration exceeded maximum gross primary productivity, causing increased net CO2 emissions. N addition treatments revealed that, surprisingly, the plants in the warmed soil were N limited, which constrained primary productivity and decreased recently assimilated C in shoots and roots. In soil, microbes were increasingly C limited under warming and increased microbial uptake of recent C. Soil respiration was increased by warming and was fueled by increased belowground inputs and turnover of recently photosynthesized C. Our findings suggest that a decade of warming seemed to have induced a N limitation in plants and a C limitation by soil microbes. This caused a decrease in net ecosystem CO2 uptake and accelerated the respiratory release of photosynthesized C, which decreased the C sequestration potential of the grassland. Our study highlights the importance of belowground C allocation and C-N interactions in the C dynamics of subarctic ecosystems in a warmer world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号