首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
It has been shown that urea in fermented beverages and foods can serve as a precursor of ethylcarbamate, a potential carcinogen, and acid urease is an effective agent for removing urea in such products. We describe herein the purification and characterization of a novel acid urease from Arthrobacter mobilis SAM 0752 and show its unique application for the removal of urea from fermented beverages using the Japanese rice wine, sake, as an example. The purified acid urease showed an optimum pH for activity at pH 4.2. The enzyme exhibited an apparent K(m) for urea of 3.0 mM and a Vmax of 2370 mumol of urea per mg and min at 37 degrees C and pH 4.2. Gel permeation chromatographic and sodium dodecyl sulfate gel electrophoretic analyses showed that the enzyme has an apparent native molecular weight (M(r)) of 290,000 and consisted of three types of subunit proteins (M(r), 67,000, 16,600, 14,100) denoted by alpha, beta, and gamma. The most probable stoichiometry of the subunits was estimated to be alpha: beta: gamma = 1:1:1, suggesting the enzyme subunit structure of (alpha beta gamma)3. The enzyme also existed as an aggregated form with an M(r) of 580,000. The purified enzyme contained 2 g-atom of nickel per alpha beta gamma unit of the enzyme. Enzyme activity was inhibited by acetohydroxamic acid, HgCl2, and CuCl2. The isoelectric point of the native enzyme was estimated by gel electrofocusing to be 6.8. Urea (50 ppm), which was exogenously added to sake (pH 4.4, 17 +/- 1% (v/v) ethanol), was completely decomposed by incubation with the enzyme (0.09 U ml-1) at 15 degrees C for 13 days. The enzyme was unstable at temperatures higher than 65 degrees C and pHs lower than 4, and was completely inactivated under the conditions of a pasteurization step involved in the traditional sake-making processes. These results indicate that the enzyme is applicable to the elimination of urea in fermented beverages with minimal modification to the conventional process.  相似文献   

2.
3.
4.
Comparison of six urease sequences revealed the presence of 10 conserved histidine residues (H96 in the gamma subunit, H39 and H41 in beta, and H134, H136, H219, H246, H312, H320, and H321 in the alpha subunit of the Klebsiella aerogenes enzyme). Each of these residues in K. aerogenes urease was substituted with alanine by site-directed mutagenesis, and the mutant proteins were purified and characterized in order to identify essential histidine residues and assign their roles. The gamma H96A, beta H39A, beta H41A, alpha H312A, and alpha H321A mutant proteins possess activities and nickel contents similar to wild-type enzyme, suggesting that these residues are not essential for substrate binding, catalysis, or metal binding. In contrast, the alpha H134A, alpha H136A, and alpha H246A proteins exhibit no detectable activity and possess 53%, 6%, and 21% of the nickel content of wild-type enzyme. These results are consistent with alpha H134, alpha H136, and alpha H246 functioning as nickel ligands. The alpha H219A protein is active and has nickel (approximately 1.9% and approximately 80%, respectively, when compared to wild-type protein) but exhibits a very high Km value (1,100 +/- 40 mM compared to 2.3 +/- 0.2 mM for the wild-type enzyme). These results are compatible with alpha H219 having some role in facilitating substrate binding. Finally, the alpha H320A protein (Km = 8.3 +/- 0.2 mM) only displays approximately 0.003% of the wild-type enzyme activity, despite having a normal nickel content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease.  相似文献   

6.
Microbial ureases hydrolyze urea to ammonia and carbon dioxide. Urease activity of an infectious microorganism can contribute to the development of urinary stones, pyelonephritis, gastric ulceration, and other diseases. In contrast to these harmful effects, urease activity of ruminal and gastrointestinal microorganisms can benefit both the microbe and host by recycling (thereby conserving) urea nitrogen. Microbial ureases also play an important role in utilization of environmental nitrogenous compounds and urea-based fertilizers. Urease is a high-molecular-weight, multimeric, nickel-containing enzyme. Its cytoplasmic location requires that urea enter the cell for utilization, and in some species energy-dependent urea uptake systems have been detected. Eucaryotic microorganisms possess a homopolymeric urease, analogous to the well-studied plant enzyme composed of six identical subunits. Gram-positive bacteria may also possess homopolymeric ureases, but the evidence for this is not conclusive. In contrast, ureases from gram-negative bacteria studied thus far clearly possess three distinct subunits with Mrs of 65,000 to 73,000 (alpha), 10,000 to 12,000 (beta), and 8,000 to 10,000 (gamma). Tightly bound nickel is present in all ureases and appears to participate in catalysis. Urease genes have been cloned from several species, and nickel-containing recombinant ureases have been characterized. Three structural genes are transcribed on a single messenger ribonucleic acid and translated in the order gamma, beta, and then alpha. In addition to these genes, several other peptides are encoded in the urease operon of some species. The roles for these other genes are not firmly established, but may involve regulation, urea transport, nickel transport, or nickel processing.  相似文献   

7.
The phenylalanyl-transfer ribonucleic acid synthetase of Escherichia coli is a tetramer that contains two different kinds of polypeptide chains. To locate the genes for the two polypeptides, we analyzed temperature-sensitive mutants with defective phenylalanyl-transfer ribonucleic acid synthetases to see which subunit was altered. The method was in vitro complementation; mutant cell extracts were mixed with purified separated alpha or beta subunits of the wild-type enzyme to generate an active hybrid enzyme. With three mutants, enzyme activity appeared when alpha was added, but not when beta was added: these are, therefore, assumed to carry lesions in the gene for the alpha subunit. Two other mutants gave the opposite response and are presumably beta mutants. Enzyme activity is also generated when alpha and beta mutant extracts are mixed, but not when two alpha or two beta mutant extracts are mixed. The inactive mutant enzymes appear to be dissociated, as judged by their sedimentation in sucrose density gradients, but the dissociation may be only partial. The active enzyme generated by complementation occurred in two forms, one that resembled the native wild-type enzyme and one that sedimented more slowly. Both alpha and beta mutants are capable of generating the native form, although alpha mutants require prior urea denaturation of the defective enzyme. With the mutants thus characterized, the genes for the alpha and beta subunits (designated pheS and heT, respectively) were mapped. The gene order, as determined by transduction is aroD-pps-pheT-pheS. The pheS and pheT genes are close together and may be immediately adjacent.  相似文献   

8.
The alpha and beta subunits of the acetyl-CoA:acetoacetate-CoA transferase were purified by isoelectric focusing of the enzyme in the presence of 6 M urea. The purified beta subunit, in which the active center of the enzyme is located, exhibits low catalytic activity (2% of the specific activity of the native enzyme) which is stimulated 5-6-fold in the presence of an equimolar concentration of alpha subunit. The presence of the substrate,acetoacetyl-CoA, is required to recover the catalytic activity of the beta subunit and mixtures containing purified alpha and beta subunits. When the enzyme is dissociation in the presence of 6 M urea and the subunits are not fractioned, removal of the urea by dialysis results in the recovery of 88-98% of enzymic activity and the native alpha2beta2 subunit structure. However, analysis of this renatured enzyme by immunochemical techniques shows that the enzyme does not refold to a completely native conformation. This renatured enzyme exhibits an immunological reactivity more closely resembling the isolated alpha subunit. The results indicate that the alpha subunit serves as a structural subunit, or possible a maturation subunit, imposing a conformation on the beta subunit that is catalytically more competent.  相似文献   

9.
K S Kim  Y T Ro    Y M Kim 《Journal of bacteriology》1989,171(2):958-964
A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, NAD(P), flavin mononucleotide, flavin adenine dinucleotide, and ferricyanide were not reduced by the enzyme, but methylene blue, thionin, and dichlorophenolindophenol were reduced. The molecular weight of the native enzyme was determined to be 380,000. Sodium dodecyl sulfate-gel electrophoresis revealed at least three nonidentical subunits of molecular weights 16,000 (alpha), 34,000 (beta), and 85,000 (gamma). The purified enzyme contained particulate hydrogenase-like activity. Selenium did not stimulate carbon monoxide dehydrogenase activity. The isoelectic point of the native enzyme was found to be 5.8; the Km of CO was 150 microM. The enzyme was rapidly inactivated by methanol. One mole of native enzyme was found to contain 2 mol of each of flavin adenine dinucleotide and molybdenum and 8 mol each of nonheme iron and labile sulfide, which indicated that the enzyme was a molybdenum-containing iron-sulfur flavoprotein. The ratio of densities of each subunit after electrophoresis (alpha:beta:gamma = 1:2:6) and the number of each cofactor in the native enzyme suggest a alpha 2 beta 2 gamma 2 structure of the enzyme. The carbon monoxide dehydrogenase of Acinetobacter sp. strain JC1 was found to have no immunological relationship with enzymes of Pseudomonas carboxydohydrogena and Pseudomonas carboxydovorans.  相似文献   

10.
By crossed immunoelectrophoresis with antibodies against the NAD-linked hydrogenase the presence of three hydrogenase protein species was demonstrated in crude extracts of Alcaligenes eutrophus H16. Protein 1 (antigen 1) exhibited NAD-reducing activity and was shown to be identical with the native heterotetrameric enzyme. Protein 2 (antigen 2) was catalytically inactive in the antibody-precipitated form and corresponded to the beta subunit (56 kDa) of the holoenzyme. Protein 3 (antigen 3) was serologically distinct from antigen 2 and catalyzed NADH-oxidizing (diaphorase) activity, suggesting that it either consists of the alpha peptide or of the alpha and gamma subunits of the diaphorase dimer. Tandem immunoelectrophoresis revealed that antigen 2 was the predominant protein species in cells cultivated under nickel deficiency. Low concentrations of the diaphorase-active antigen 3 were also detected under these conditions. Extracts from mutants defective in the catalytic activity of NAD-reducing hydrogenase still contained the four polypeptides. This was shown by immunodiffusion and immunoblotting with antibodies raised against the individual subunits. However, as observed with nickel-deficient cells, no complete tetrameric protein could be identified, and the dominant subunit species (70-80%) was the beta peptide.  相似文献   

11.
12.
Acetyl-CoA carboxylase regulates the rate of fatty acid synthesis. This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet. Accumulated evidence shows that pea plastidic acetyl-CoA carboxylase is activated by light and the activation is caused by light-dependent reduction of carboxyltransferase, but not of biotin carboxylase, via a redox cascade. To understand the reductive activation of carboxyltransferase at the molecular level here, we obtained the active enzyme composed of decahistidine-tagged (His tag) alpha and beta polypeptides through the expression of the pea plastidic carboxyltransferase gene in Escherichia coli. Gel filtration showed that the molecular size of the recombinant carboxyltransferase is in agreement with that of partially purified carboxyltransferase from pea chloroplasts. The catalytic activity of the recombinant enzyme was similar to that of native carboxyltransferase. These results indicate that the molecular structure and conformation of recombinant carboxyltransferase resemble those of its native counterpart and that native carboxyltransferase is indeed composed of alpha and beta polypeptides. This recombinant enzyme was activated by dithiothreitol, a known reductant of S-S bonds, with a profile similar to that of its native counterpart. The recombinant enzyme was activated by reduced thioredoxin-f, a signal transducer of redox potential in chloroplasts under irradiation. Thus, this enzyme was redox-regulated, like that of the native carboxyltransferase.  相似文献   

13.
Urease has been purified from the dehusked seeds of pigeonpea (Cajanus cajan L.) to apparent electrophoretic homogeneity with approximately 200 fold purification, with a specific activity of 6.24 x10(3) U mg(-1) protein. The enzyme was purified by the sequence of steps, namely, first acetone fractionation, acid step, a second acetone fractionation followed by gel filtration and anion-exchange chromatographies. Single band was observed in both native- and SDS-PAGE. The molecular mass estimated for the native enzyme was 540 kDa whereas subunit values of 90 kDa were determined. Hence, urease is a hexamer of identical subunits. Nickel was observed in the purified enzyme from atomic absorption spectroscopy with approximately 2 nickel ions per enzyme subunit. Both jack bean and soybean ureases are serologically related to pigeonpea urease. The amino acid composition of pigeonpea urease shows high acidic amino acid content. The N-terminal sequence of pigeonpea urease, determined up to the 20th residue, was homologous to that of jack bean and soybean seed ureases. The optimum pH was 7.3 in the pH range 5.0-8.5. Pigeonpea urease shows K(m) for urea of 3.0+/-0.2 mM in 0.05 M Tris-acetate buffer, pH 7.3, at 37 degrees C. The turnover number, k(cat), was observed to be 6.2 x 10(4) s(-1) and k(cat)/K(m) was 2.1 x 10(7) M(-1) s(-1). Pigeonpea urease shows high specificity for its primary substrate urea.  相似文献   

14.
Morganella morganii, a very common cause of catheter-associated bacteriuria, was previously classified with the genus Proteus on the basis of urease production. M. morganii constitutively synthesizes a urease distinct from that of other uropathogens. The enzyme, purified 175-fold by passage through DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 chromatography resins, was found to have a native molecular size of 590 kilodaltons and was composed of three distinct subunits with apparent molecular sizes of 63, 15, and 6 kilodaltons, respectively. Amino-terminal analysis of the subunit polypeptides revealed a high degree of conservation of amino acid sequence between jack bean and Proteus mirabilis ureases. Km for urea equalled 0.8 mM. Antiserum prepared against purified enzyme inhibited activity by 43% at a 1:2 dilution after 1 h of incubation. All urease activity was immunoprecipitated from cytosol by a 1:16 dilution. Antiserum did not precipitate ureases of other species except for one Providencia rettgeri strain but did recognize the large subunits of ureases of Providencia and Proteus species on Western blots (immunoblots). Thirteen urease-positive cosmid clones of Morganella chromosomal DNA shared a 3.5-kilobase (kb) BamHI fragment. Urease gene sequences were localized to a 7.1-kb EcoRI-SalI fragment. Tn5 mutagenesis revealed that between 3.3 and 6.6 kb of DNA were necessary for enzyme activity. A Morganella urease DNA probe did not hybridize with gene sequences of other species tested. Morganella urease antiserum recognized identical subunit polypeptides on Western blots of cytosol from the wild-type strain and Escherichia coli bearing the recombinant clone which corresponded to those seen in denatured urease. Although the wild-type strain and recombinant clone produced equal amounts of urease protein, the clone produced less than 1% of the enzyme activity of the wild-type strain.  相似文献   

15.
A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an alpha2beta)gamma(n) (n > or = 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the alpha and beta subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (alpha) and 54 kDa (beta) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6.  相似文献   

16.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin gamma1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to gamma1 and beta1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin beta1 antibody-Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to beta1 and gamma1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin alpha4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20-35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to beta1 and alpha6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (alpha4beta1gamma1) and that the cells adhere to the protein by using alpha6beta1 integrin.  相似文献   

17.
1. Five subunits (alpha, beta, gamma, delta, and epsilon) of an ATPase from a thermophilic bacterium PS3 were purified in the presence of 8 M urea by ion exchange chromatography. Then the ATPase activity was reconstituted by mixing the subunit solutions and incubating them at 20-45 degrees, at pH 6.3 to 7.0. 2. Mixtures containing beta + gamma or alpha + beta + delta regained ATP-hydrolyzing activity, but mixtures of alpha + beta and beta + delta did not. Combinations not including beta were all inactive. 3. The ATPase activity reconstituted from alpha + beta + delta was thermolabile and insensitive to NaN3, whereas the activities obtained from mixtures containing beta and gamma were thermostable and sensitive to NaN3, like the native ATPase. 4. The assemblies containing both beta and gamma subunits had the same mobility as the native ATPase molecule on gel electrophoresis, those without the gamma subunit moved more rapidly toward the anode. 5. Subunits epsilon and delta did not inhibit the ATPase activity of either the assembly (alpha + beta + gamma) or the native ATPase.  相似文献   

18.
Two GTP-binding proteins which can be ADP-ribosylated by islet-activating protein, pertussis toxin, were purified from the cholate extract of bovine lung membranes. Both proteins had the same heterotrimeric structure (alpha beta gamma), but the alpha subunits were dissociated from the beta gamma when they were purified in the presence of AlCl3, MgCl2 and NaF. The molecular mass of the alpha subunit of the major protein (designated GLu, with beta gamma) was 40 kDa and that of the minor one was 41 kDa. The results of peptide mapping analysis of alpha subunits with a limited proteolysis indicated that GLu alpha was entirely different from the alpha of brain Gi or Go, while the 41-kDa polypeptide was identical with the alpha of bovine brain Gi. The kinetics of guanosine 5'-[3-O-thio]triphosphate (GTP[gamma S]) binding to GLu was similar to that to lung Gi but quite different from that to brain Go. On the other hand, incubation of GLu alpha at 30 degrees C caused a rapid decrease of GTP[gamma S] binding, the inactivation curve being similar to that of Go alpha but different from that of Gi alpha. The alpha subunits of lung Gi and GLu did not react with the antibodies against the alpha subunit of bovine brain Go. The antibodies were raised in rabbits against GLu alpha and were purified with a GLu alpha-Sepharose column. The purified antibodies reacted not only with GLu alpha but also with the 41-kDa protein and purified brain Gi alpha. However, the antibodies adsorbed with brain Gi alpha reacted only with GLu alpha, indicating antisera raised with GLu alpha contained antibodies that recognize both Gi alpha and GLu alpha, and those specific to GLu alpha. These results further indicate that GLu is different from Gi or Go. Anti-GLu alpha antibodies reacted with the 40-kDa proteins in the membranes of bovine brain and human leukemic (HL-60) cells. The beta gamma subunits were also purified from bovine lung. The beta subunit was the doublet of 36-kDa and 35-kDa polypeptides. The lung beta gamma could elicit the ADP-ribosylation of GLu alpha by islet-activating protein, increase the GTP[gamma S] binding to GLu and protect the thermal denaturation of GLu alpha. The antibodies raised against brain beta gamma cross-reacted with lung beta but not with lung gamma.  相似文献   

19.
An acid DNase (DNase II) from porcine spleen was purified by sequential chromatography over carboxymethyl-cellulose, blue dextran-Sepharose, hydroxylapatite, and sulfoxyethyl-cellulose. The purified enzyme shows two polypeptide bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis at Mr 35,000 (alpha chain) and 10,000 (beta chain). The sum of the two molecular weights is that of the native enzyme (45,000). Thus, the DNase II molecule is an alpha,beta dimer. The two polypeptides are not joined by disulfide bonds, but can be cross-linked chemically with dimethyl suberimidate. They are dissociable in 8 M urea, after which they can be isolated by gel filtration on Sephadex G-100, eluting with 1 M acetic acid. Once dissociated, the two polypeptides cannot be reassociated to regenerate DNase II activity. The sum of the amino acid compositions of the two polypeptides is that of the native enzyme, and both contain carbohydrate. The beta chain is devoid of histidine, half-cystine, valine, and methionine. The NH2-terminal amino acid of the alpha chain is leucine, while that of the beta chain cannot be identified by either dansylation or Edman degradation. Alkylation of an essential histidine residue of DNase II occurs on incubation of the enzyme with [2-14C] ICH2COOH (Oshima, R. G., and Price, P. A. (1973) J. Biol. Chem. 248, 7522-7526). Radioactivity is found only in the alpha chain. After hydrolysis of the alpha chain with trypsin, chymotrypsin, and thermolysin, radioactive peptides were isolated by gel filtration on Sephadex G-25 and reversed-phase high performance liquid chromatography. Sequence analyses of the radioactive peptides show alkylation of 1 of 9 histidines in the entire amino acid sequence of DNase II. The sequence around this histidine, determined by manual microsequencing and by the release of amino acids with carboxypeptidases A and B, is Ala-Thr-Glu-Asp-His-Ser-Lys-Trp.  相似文献   

20.
We have established by peptide mapping and immunochemical analysis of purified clathrin assembly protein preparations from bovine brain, that the cluster of components of mol. wt 100-120 kd fall into four classes, which we term alpha, beta, beta' and gamma. The beta and beta' proteins are immunologically related and generate a series of common tryptic peptides. The same criteria reveal no such homologies between the alpha, beta(beta') and gamma polypeptides. The so-called HA-II assembly protein group contains equimolar amounts of alpha and beta class polypeptides, which are shown to interact with each other. In the HA-I group assembly protein complex gamma and beta' class polypeptides form a stoichiometric complex. Immunofluorescence microscopy reveals that the HA-I complex is specifically associated with clathrin-coated membranes in the Golgi region of cultured cells, whereas the HA-II complex appears to be restricted to coated pits on the plasma membrane. The data lead to the tentative conclusion that the clathrin assembly proteins are involved in the recognition of the intracellular targets by uncoated vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号