首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

2.
3.
In Saccharomyces cerevisiae cells (strain A364A) during a shift-down from glucose to raffinose, a rapid reduction in the rate of RNA accumulation was observed whereas the rate of protein accumulation was unaffected for at least 2 h. Following the transition the percentage of unbudded cells slightly increased and the cell volume distribution showed a newly formed subpopulation of smaller cells. To study the effects of the shift-down on the protein synthesis pattern, total [35S]-methionine pulse-labeled extracts were fractionated by high-resolution two-dimensional gel electrophoresis. The synthesis of two classes of proteins (I and II) was modulated during the transitory state of growth: one positively, the other negatively. Two polypeptides of 57 kDa showed the most dramatic increase in synthesis during the shift-down. Also a heat-shock protein (HSP 256) appeared to be positively correlated to the shift-down transition.  相似文献   

4.
Inhibitor-Induced Shift-Downs in Escherichia coli   总被引:3,自引:1,他引:2  
A shift-down response in Escherichia coli cells has been brought about by moderate concentrations of azide or cyanide. Early events of the response included a preferential inhibition of ribonucleic acid relative to deoxyribonucleic acid synthesis, a degradation of polyribosomes, and an inhibition of protein synthesis followed by a transient relief. These changes were entirely comparable to those observed with nutrient-induced shift-downs. The influences of various nutrient supplements on an azide shift-down were examined, and methionine was found to relieve effectively the inhibition of ribonucleic acid synthesis in some strains of cells.  相似文献   

5.
Among the syntheses of DNA, RNA and protein in Escherichia coli cells, the DNA synthesis was found to be preferentially inhibited at lower concentrations of showdomycin. At such lower concentrations of this antibiotic, serious decreases in the synthesis of deoxycytidine phosphates and in de novo synthesis of deoxythymidine phosphates were found in parallel with the decrease in the synthesis of DNA, although the syntheses of other pyrimidine nucleotides were not significantly diminished. The salvage synthesis of deoxythymidine phosphates was very resistant to this antibiotic. The inhibitory action of this antibiotic on DNA synthesis could be reversed by the concomitant addition of a thiol compound or a nucleoside. When a nucleoside was added after the completion of the inhibition by showdomycin, the recovery of the DNA synthesis from the inhibition was detected only after the recovery of the syntheses of pyrimidine ribotides, pyrimidine deoxyribotides and RNA have become distinct.  相似文献   

6.
In Saccharomyces cerevisiae cells (strain A364A) during a shift-down from glucose to raffinose, a rapid reduction in the rate of RNA accumulation was observed whereas the rate of protein accumulation was unaffected for at least 2 h. Following the transition the percentage of unbudded cells slightly increased and the cell volume distribution showed a newly formed subpopulation of smaller cells. To study the effects of the shift-down on the protein synthesis pattern, total [35S]-methionine pulse-labeled extracts were fractionated by high-resolution two-dimensional gel electrophoresis. The synthesis of two classes of proteins (I and II) was modulated during the transitory state of growth: one positively, the other negatively. Two polypeptides of 57 kDa showed the most dramatic increase in synthesis during the shift-down. Also a heat-shock protein (HSP 256) appeared to be positively correlated to the shift-down transition.  相似文献   

7.
Interferometric and photometric measurements have been made on HeLa cells, a strain of cells originally derived from a human carcinoma. From a study of the relations between successive physical measurements on individual cells, it was confirmed that, whereas the net syntheses of nuclear RNA and nuclear protein are closely associated during interphase, they are dissociated from DNA replication to a significant extent. These results on nuclear metabolism agree with others previously reported in cell strains derived from tumors; they contrast with results from freshly prepared normal cells, where the net syntheses of DNA, nuclear RNA, and protein are closely associated during interphase. Cytoplasmic measurements on HeLa cells showed that much of the net synthesis of cytoplasmic RNA is associated with DNA replication as in normal cells, and they failed to detect transfer from the nucleus of a stable RNA component synthesized independently from DNA replication. In auxiliary experiments, an inhibition of the onset of DNA synthesis was produced by a dose of X-rays; under these conditions it was shown that the major part of the accumulation of nuclear protein was independent of DNA replication and that the accumulation of nuclear RNA was equivalent to or slightly less than that of nuclear protein. About half the accumulation of cytoplasmic RNA was inhibited when DNA synthesis was blocked.  相似文献   

8.
Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.  相似文献   

9.
The coordination of the syntheses of the several cellular lipid classes with one another and with cell cycle control were investigated in proliferating L6 myoblasts and fibroblasts (WI-38 and CEF). Cells cultured in lipid-depleted medium containing one of two inhibitors of hydroxymethylglutaryl-CoA reductase, 25-hydroxycholesterol or compactin, display a rapid, dose-dependent inhibition of cholesterol synthesis. Inhibition of the syntheses of each of the other lipid classes is first apparent after the rate of sterol synthesis is depressed severalfold. 24 h after the addition of the inhibitor, the syntheses of DNA, RNA, and protein also decline. The inhibition of sterol synthesis leads to a threefold reduction in the sterol:phospholipid ratio that parallels the development of proliferative and G1 cell cycle arrests and alterations in cellular morphology. All of these responses are reversed upon reinitiation of cholesterol synthesis or addition of exogenous cholesterol. A comparison of the timing of these responses with respect to the development of the G1 arrest indicates that the primary factor limiting cell cycling is the availability of cholesterol provided either from an exogenous source or by de novo synthesis. The G1 arrest appears to be responsible for the general inhibition of macromolecular synthesis in proliferating cells treated with 25-hydroxycholesterol. In contrast, the apparent coordinated inhibition of lipid synthesis is not a consequence of the G1 arrest but may in fact give rise to it. Sequential inhibition of lipid syntheses is also observed in cycling cells when the synthesis of choline-containing lipids is blocked by choline deprivation and is observed in association with G1 arrests caused by confluence or differentiation. In the nonproliferating cells, the syntheses of lipid and protein do not appear coupled.  相似文献   

10.
A key attribute of the stringent response of bacteria is the rapid inhibition of ribosomal RNA synthesis mediated by unusual nucleotides in response to uncharged tRNA. The question as to whether mammalian cells show a stringent response analogous to that of bacteria was critically tested by the effective rapid amino acid starvation of both normal and transformed cells. Rapid starvation giving a high proportion of uncharged tRNA for leucine was produced within 7 minutes of expression of a nonleaky ts leucyl tRNA synthetase mutation in transformed CHO cells (tsH1) and in its normal growth control revertant (L-73). To control for the effect of temperature alone, tsrevertants of tsH1 and L-73 were included in the study, and to control for effects due simply to the inhibition of protein synthesis, the translational elongation inhibitor cycloheximide was used. In addition, rapid starvation for histidine was effected by incubation of both the CHO cell lines and of freshly explanted normal Chinese hamster embryo fibroblasts in histidine-free medium containing high concentrations of histidinol. The rate of preribosomal RNA synthesis and the extent of its maturation to mature rRNA was measured using (3H-methyl) methionine as a donor of methyl groups during synthesis and methylation of pre-rRNA. There was no effect on pre-rRNA synthesis of the rapid generation of uncharged tRNA for 45 minutes for any of the cell types tested. A nonspecific inhibition of maturation of 18S rRNA and late (3 hour) inhibition of pre-rRNA synthesis was observed, but could be mimicked by the inhibition of protein synthesis to comparable levels with cycloheximide. Less severe amino acid starvation resulting in a more physiological inhibition of protein synthesis to 30% also had no specific effect on pre-rRNA synthesis and maturation. Intracellular nucleotide pools were also examined for the appearance of unusual nucleotides such as guanosine tetraphosphate or pentaphosphate and for changes in the levels of normal nucleotides after severe amino acid starvation. No such changes could be detected. We conclude that although mammalian cells may have some biochemical reactions which respond to uncharged tRNA, they do not possess a macromolecular control system analogous to the stringent response of bacteria.  相似文献   

11.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

12.
Interferometric and photometric measurements have been made on replicating embryo mouse cell cultures. From a study of the relations between successive physical measurements on individual cells, it was found that the net syntheses of DNA, nuclear RNA, nuclear protein, and cytoplasmic RNA are closely associated during interphase. In auxiliary experiments, an inhibition of the onset of DNA synthesis (produced by a dose of X-rays) was found to block the majority of the accumulation of nuclear protein and nuclear RNA. These results are consistent with others previously reported in dividing cell cultures freshly prepared from normal tissues.  相似文献   

13.
Diphenylhydantoin inhibits cortisol-induced lysis of thymocytes   总被引:1,自引:0,他引:1  
Diphenylhydantoin (DPH) shares two features with cortisol: immunosuppression and cleft palate formation. We tested the hypothesis that DPH would have effects on lymphocytes in vitro similar to those induced by cortisol, and the corollary that DPH would inhibit those cortisol effects. We found that DPH lysed rat thymocytes, although at higher concentrations than cortisol. When combined, DPH inhibited cortisol lysis of thymocytes. Neither drug lysed human phytohemagglutinin (PHA)-stimulated cells, but both drugs depressed DNA and RNA syntheses in PHA cells. DPH augmented cortisol inhibition of DNA and RNA syntheses in PHA cells and DNA synthesis in rat thymocytes. It had no effect on cortisol inhibition of RNA synthesis in rat thymocytes. It appears that DPH has a cortisol-like action (lysis of rat thymocytes). The actions of this drug enable us to show that cortisol lysis and the inhibition of DNA or RNA synthesis can be associated. These phenomena may explain some immunosuppressive effects of DPH in the human.  相似文献   

14.
The effects of the three antibiotics U-12,241, nogalamycin, and U-20,661 on (i) deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis in KB cell cultures and cell-free systems of bacterial and mammalian origin and on (ii) oxidative phosphorylation in rat liver mitochondria were compared. Nogalamycin and U-12,241 inhibited RNA synthesis more strongly than DNA synthesis in all test systems. Antibiotic U-20,661 inhibited DNA and RNA synthesis equally in whole mammalian cells and their corresponding cell-free systems. The RNA polymerase from Escherichia coli, however, was at least 100 times more sensitive to U-20,661 than was the DNA polymerase. U-12,241 caused significant uncoupling of oxidative phosphorylation in mitochondria.  相似文献   

15.
Zorbamycin (U-30,604E) induces rapid degradation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) in Bacillus subtilis cells. DNA degradation is initiated first and is closely followed by the degradation of RNA. No interaction between isolated DNA and zorbamycin is observed. Nucleic acid and protein syntheses are not inhibited by zorbamycin in cell-free systems. Since the initial effect of the antibiotic is expressed at the level of the cellular DNA fraction, we assume that zorbamycin somehow induces a change in the structure or function of the cellular DNA fraction which results in rapid breakdown of this fraction.  相似文献   

16.
17.
In CHO cell line and primary human diploid fibroblasts culture an incorporation of protein, RNA and DNA biosyntheses precursors was investigated under different conditions of inhibition of translation by cycloheximide (CHM). Both CHO and human fibroblasts transitory treatment by CHM in the serumfree medium resulted in inhibition of protein and DNA syntheses during S-period while RNA synthesis increased up to 130% (CHM concentration from 0.003 to 2 Mg/ml), as well as in Go--an incorporation of 3H-U increased to 200% (CHM concentration-100 Mg/ml). Long-term treatment (48 hours) in the serum-free medium resulted in decreased uptake of 3H-T and 3H-L during first 6 hours of experiment, while incorporation of 3H-U increased to 160%. By 16-th hour of treatment characters of protein, RNA and DNA syntheses came back to control levels.  相似文献   

18.
The treatment of germinating maize seeds (cv. Ganga 2) with aflatoxin B1 resulted in suppression of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) synthesis at 3, 4, and 5 h, respectively. At or below the concentrations inhibitory for these in vivo syntheses, the toxin inhibited chromatin-bound DNA-dependent RNA polymerase activity. The synthesis of both polyadenylated and non-polyadenylated RNA was inhibited, but the effect on the former was more pronounced. Equilibrium dialysis and difference spectral and viscometric analyses showed a binding of aflatoxin B1 to DNA isolated from the seeds. It is proposed that the inhibition of RNA synthesis in maize seeds by the toxin is due to the interference with the RNA polymerase activity, which seems, at least partially, due to the impairment of DNA template functions.  相似文献   

19.
The treatment of germinating maize seeds (cv. Ganga 2) with aflatoxin B1 resulted in suppression of ribonucleic acid (RNA), protein, and deoxyribonucleic acid (DNA) synthesis at 3, 4, and 5 h, respectively. At or below the concentrations inhibitory for these in vivo syntheses, the toxin inhibited chromatin-bound DNA-dependent RNA polymerase activity. The synthesis of both polyadenylated and non-polyadenylated RNA was inhibited, but the effect on the former was more pronounced. Equilibrium dialysis and difference spectral and viscometric analyses showed a binding of aflatoxin B1 to DNA isolated from the seeds. It is proposed that the inhibition of RNA synthesis in maize seeds by the toxin is due to the interference with the RNA polymerase activity, which seems, at least partially, due to the impairment of DNA template functions.  相似文献   

20.
Protein synthesis is shown to be very heat-sensitive in Chinese hamster cells. It is shut off completely following 15-20 min at 42 degrees C whereas RNA and DNA syntheses are affected only after much longer exposure times. Cells recover from inhibition of protein synthesis upon transfer to 37 degrees C. The degree of recovery is inversely related to the duration of heat exposure and it fits cell survival quantitatively. Cells which become temporarily heat-resistant by prior heat-treatment, are able to recover translational capacity even after a very long exposure to heat (4 h at 42 degrees C). Spermine, which enhances heat-induced cell killing, does not increase the response to heat of protein, RNA and DNA synthesis. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity is lost exponentially following a 20 min lag period during exposure at 42 degrees C. The half-life observed (12 min) is in agreement with the reported values of half-life of decay of ODC in other systems. It is concluded that the loss of activity is due to the shut-off of translation. The activity of ODC is recovered upon transfer to 37 degrees C. The presence of spermine during heating does not affect the loss of enzyme activity but delays its recovery by about 3 h upon transfer to 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号