首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple glucose-6-phosphate dehydrogenase (G6PD)-deficient alleles have reached polymorphic frequencies because of the protection they confer against malaria infection. A protection mechanism based on enhanced phagocytosis of parasitized G6PD-deficient erythrocytes that are oxidatively damaged is well accepted. Although an association of this phenotype with the impairment of the antioxidant defense in G6PD deficiency has been demonstrated, the dysfunctional pathway leading to membrane damage and modified exposure of the malaria-infected red cell to the host is not known. Thus, in this study, erythrocytes from the common African variant G6PD A- were used to analyze by redox proteomics the major oxidative changes occurring in the host membrane proteins during the intraerythrocytic development of Plasmodium falciparum, the most lethal malaria parasite. Fifteen carbonylated membrane proteins exclusively identified in infected G6PD A- red blood cells revealed selective oxidation of host proteins upon malarial infection. As a result, three pathways in the host erythrocyte were oxidatively damaged in G6PD A-: (1) traffic/assembly of exported parasite proteins in red cell cytoskeleton and surface, (2) oxidative stress defense proteins, and (3) stress response proteins. Additional identification of hemichromes associated with membrane proteins also supports a role for specific oxidative modifications in protection against malaria by G6PD polymorphisms.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disease, which causes neonatal hemolytic anemia and jaundice. Recent studies of our group showed that the Mediterranean variant of this enzyme (Gd-Md) is the predominant G6PD in Iranian male infants suffering from jaundice; this variant is classified as severe G6PD deficiency. Considering the importance of G6PD reaction and its products NADPH and glutathione (GSH) against oxidative stress, we hypothesized the failure of detoxification of H(2)O(2) in G6PD-deficient white blood cells that could probably induce primary DNA damage. For the evaluation of DNA damage, we analyzed mononuclear leukocytes of 36 males suffering from the Gd-Md deficiency using alkaline single cell gel electrophoresis (SCGE) or comet assay. The level of DNA damage was compared with the level of basal DNA damage in control group represented by healthy male infant donors (of the same age group). Visual scoring was used for the evaluation of DNA damages. The results showed that the mean level of the DNA strand breakage in mononuclear leukocytes of 36 male G6PD-deficient (Gd-Md) infants was significantly higher (P < 0.001) than those observed in the normal lymphocytes. In conclusion, this investigation indicates that the mononuclear leukocytes of the Gd-Md samples may be exposed to DNA damage due to oxidative stress. This is the first report using comet assay for evaluation of DNA damage in severe G6PD deficiency samples.  相似文献   

3.
Glucose 6-phosphate dehydrogenase (G6PD) deficiency, known as favism, is classically manifested by hemolytic anemia in human. More recently, it has been shown that mild G6PD deficiency moderately affects cardiac function, whereas severe G6PD deficiency leads to embryonic lethality in mice. How G6PD deficiency affects organisms has not been fully elucidated due to the lack of a suitable animal model. In this study, G6PD-deficient Caenorhabditis elegans was established by RNA interference (RNAi) knockdown to delineate the role of G6PD in animal physiology. Upon G6PD RNAi knockdown, G6PD activity was significantly hampered in C. elegans in parallel with increased oxidative stress and DNA oxidative damage. Phenotypically, G6PD-knockdown enhanced germ cell apoptosis (2-fold increase), reduced egg production (65% of mock), and hatching (10% of mock). To determine whether oxidative stress is associated with G6PD knockdown-induced reproduction defects, C. elegans was challenged with a short-term hydrogen peroxide (H2O2). The early phase egg production of both mock and G6PD-knockdown C. elegans were significantly affected by H2O2. However, H2O2-induced germ cell apoptosis was more dramatic in mock than that in G6PD-deficient C. elegans. To investigate the signaling pathways involved in defective oogenesis and embryogenesis caused by G6PD knockdown, mutants of p53 and mitogen-activated protein kinase (MAPK) pathways were examined. Despite the upregulation of CEP-1 (p53), cep-1 mutation did not affect egg production and hatching in G6PD-deficient C. elegans. Neither pmk-1 nor mek-1 mutation significantly affected egg production, whereas sek-1 mutation further decreased egg production in G6PD-deficient C. elegans. Intriguingly, loss of function of sek-1 or mek-1 dramatically rescued defective hatching (8.3- and 9.6-fold increase, respectively) induced by G6PD knockdown. Taken together, these findings show that G6PD knockdown reduces egg production and hatching in C. elegans, which are possibly associated with enhanced oxidative stress and altered MAPK pathways, respectively.  相似文献   

4.
Thiol status and growth in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes. Experimental Parasitology 57, 239-247. The relationship of the thiol status of the human erythrocyte to the in vitro growth of Plasmodium falciparum in normal and in glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells was investigated. Pretreatment with the thiol-oxidizing agent diamide led to inhibition of growth of P. falciparum in G6PD-deficient cells, but did not affect parasite growth in normal cells. Diamide-treated normal erythrocytes quickly regenerated intracellular glutathione (GSH) and regained normal membrane thiol status, whereas G6PD-deficient cells did not. Parasite invasion and intracellular development were affected under conditions in which intracellular GSH was oxidized to glutathione disulfide and membrane intrachain and interchain disulfides were produced. An altered thiol status in the G6PD-deficient erythrocytes could underlie the selective advantage of G6PD deficiency in the presence of malaria.  相似文献   

5.
The primary recognized health risk from common deficiencies in glucose-6-phosphate dehydrogenase (G6PD), a cytoprotective enzyme for oxidative stress, is red blood cell hemolysis. Here we show that litters from untreated pregnant mutant mice with a hereditary G6PD deficiency had increased prenatal (fetal resorptions) and postnatal death. When treated with the anticonvulsant drug phenytoin, a human teratogen that is commonly used in pregnant women and causes embryonic oxidative stress, G6PD-deficient dams had higher embryonic DNA oxidation and more fetal death and birth defects. The reported G6PD gene mutation was confirmed and used to genotype fetal resorptions, which were primarily G6PD deficient. This is the first evidence that G6PD is a developmentally critical cytoprotective enzyme for both endogenous and xenobiotic-initiated embryopathic oxidative stress and DNA damage. G6PD deficiencies accordingly may have a broader biological relevance as important determinants of infertility, in utero and postnatal death, and teratogenesis.  相似文献   

6.
Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated β-galactosidase (SA-β-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL). Concomitant with the extension of lifespan was decreased production of reactive oxygen species. Additionally, lifespan extension was paralleled by the greatly abated formation of such oxidative damage markers as 8-hydroxy-deoxyguanosine (8-OHdG) as well as the oxidized and cross-linked proteins. Moreover, the mitochondrial mass increased, but the mitochondrial membrane potential ΔΨm decreased in cells upon serial propagation. These changes were inhibited by lowering the oxygen tension. Our findings provide additional support to the notion that oxidative damage contributes to replicative senescence of G6PD-deficient cells and reduction of oxidative damage by lowering oxygen tension can delay the onset of cellular senescence.  相似文献   

7.
Inactivation of glucose-6-phosphate dehydrogenase (G6PD) may contribute to vascular dysfunction in preeclampsia, and oxidative stress has been implicated in the pathogenesis of this disease. We have compared the susceptibility of erythrocytes and human umbilical vein endothelial cells (HUVEC) to oxidative stress in women with normotensive or preeclamptic pregnancies. The redox status of erythrocytes was also correlated with neutrophil-mediated superoxide (O2) production in women recruited to the “Vitamins in Preeclampsia” (VIP) trial. Erythrocytes and HUVEC from women with preeclampsia demonstrated impaired redox regulation and diminished response to glucose, detectable at 14–20 weeks gestation prior to onset of the clinical disease. Hexokinase and G6PD activities were decreased in erythrocytes and G6PD activity was decreased in HUVEC from preeclamptic pregnancies. Phorbol-ester-stimulated O2 was enhanced in preeclamptic neutrophils. Impaired redox regulation in erythrocytes and HUVEC in preeclampsia may be due to diminished hexokinase and G6PD activities resulting from increased release of reactive oxygen species from activated neutrophils. Our findings provide the first evidence that decreased G6PD activity in preeclampsia is associated with impaired redox regulation in erythrocytes and fetal endothelial cells. The deficiency in G6PD in preeclampsia potentially accounts for the lack of protection against oxidative stress afforded by antioxidant vitamin C/E supplementation in the VIP trial.  相似文献   

8.
A Kennedy  R N Frank  S D Varma 《Life sciences》1983,33(13):1277-1283
When incubated in high galactose media, fibroblasts from individuals with the severe (Mediterranean) variety of glucose-6-phosphate dehydrogenase (G6PD) deficiency accumulate significantly less galactitol than do fibroblasts from matched control subjects. The effect is not observed in fibroblasts from black subjects with the more common, and milder, A- variant of G6PD deficiency. Since aldose reductase and sorbitol dehydrogenase activities in experimental and control fibroblasts are identical, the effect is most likely due to the substantial reduction in NADPH levels in severely G6PD-deficient cells. Sorbitol does not accumulate either in control or in G6PD deficient fibroblasts incubated in high glucose medium, most likely because of the action of sorbitol dehydrogenase, and the presence of a carrier-mediated glucose transport system in the cell membrane which limits the concentration of glucose that can accumulate in these cells.  相似文献   

9.
Haemolysis is usually episodic in glucose-6-phosphate dehydrogenase (G6PD) deficiency, often triggered by a period of oxidative stress. In the present work, we investigate a possible biochemical mechanism underlying the enhanced susceptibility of G6PD deficient red blood cells (RBC) to oxidative stress. We analysed eight male subjects with Mediterranean glucose-6P-dehydrogenase deficiency (G6PDd), class II, for their ability in phosphorylating erythrocyte membrane band 3 following oxidative and osmotic stress. Our findings show that this sensitivity is connected to an early membrane band 3 Tyr-phosphorylation in the presence of diamide. However, since both Syk, and Lyn kinases, and SHP-2 phosphatase, mostly implicated in the band 3 P-Tyr level regulation, are alike in content and activity in normal and patient erythrocytes, an alteration in the membrane organization is likely the cause of the anomalous response to the oxidant. We report, in fact, that hypertonic-induced morphological change in G6PDd erythrocyte induces a higher membrane band 3 Tyr-phosphorylation, suggesting a pre-existing membrane alteration, likely due to the chronic lowering of the redox systems in patients. We also report that 1-chloro-2,4-dinitrobenzene-pre-treatment of normal red cells can alter the normal protein-protein and protein-membrane interaction under hypertonic rather than oxidative stress, thus partially resembling the response in patients, and that RBC may utilize a wider range of redox defence, under oxidative conditions, including, but not exclusively, NADPH and glutathione. On the whole, these results would encourage a different approach to the evaluation of the effects of pharmacological administration to patients, giving more attention to the possible drug-induced membrane alteration evidenced by the abnormal band 3 Tyr-phosphorylation.  相似文献   

10.
Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated β-galactosidase (SA-β-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL). Concomitant with the extension of lifespan was decreased production of reactive oxygen species. Additionally, lifespan extension was paralleled by the greatly abated formation of such oxidative damage markers as 8-hydroxy-deoxyguanosine (8-OHdG) as well as the oxidized and cross-linked proteins. Moreover, the mitochondrial mass increased, but the mitochondrial membrane potential ΔΨm decreased in cells upon serial propagation. These changes were inhibited by lowering the oxygen tension. Our findings provide additional support to the notion that oxidative damage contributes to replicative senescence of G6PD-deficient cells and reduction of oxidative damage by lowering oxygen tension can delay the onset of cellular senescence.  相似文献   

11.
Diabetic ketoacidosis is traditionally stated as being capable of precipitating haemolysis in patients deficient in glucose-6-phosphate dehydrogenase (G6PD). This, however, is based on only a few case reports with inadequate documentation. A study was therefore conducted to review the subject in people with the Mediterranean variant of G6PD deficiency. Perusal of the medical records for the years 1970-82 yielded 15 patients with G6PD deficiency who had been admitted to hospital for a total of 36 episodes of diabetic ketoacidosis. Ten of these episodes had been complicated by haemolytic anaemia, but in every one there was unequivocal evidence of either concurrent bacterial infection or inadvertent ingestion of drugs, either of which might induce haemolysis in G6PD deficient patients. In the remaining 26 episodes there was no evidence of developing or established haemolytic anaemia. From these findings diabetic ketoacidosis should not be regarded as a risk factor for haemolysis in the Mediterranean variant of G6PD deficiency.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the oxidative pentose phosphate cycle, regulates the NADPH/NADP(+) ratio in eukaryotic cells. G6PD deficiency is one of the most common mutations in humans and is known to cause health problems for hundreds of millions worldwide. Although it is known that decreased G6PD functionality can result in increased susceptibility to oxidative stress, the molecular targets of this stress are not known. Using a Chinese hamster ovary G6PD-null mutant, we previously demonstrated that exposure to a thiol-specific oxidant, hydroxyethyldisulfide, caused enhanced radiation sensitivity and an inability to repair DNA double strand breaks. We now demonstrate a molecular mechanism for these observations: the direct inhibition of DNA end binding activity of the Ku heterodimer, a DNA repair protein, by oxidation of its cysteine residues. Inhibition of Ku DNA end binding was found to be reversible by treatment of the nuclear extract with dithiothreitol, suggesting that the homeostatic regulation of reduced cysteine residues in Ku is a critical function of G6PD and the oxidative pentose cycle. In summary, we have discovered a new layer of DNA damage repair, that of the functional maintenance of repair proteins themselves. In view of the rapidly escalating number of roles ascribed to Ku, these results may have widespread ramifications.  相似文献   

13.

Background

Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.

Methodology

Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO), superoxide anions (O2 ), and oxidative stress were determined and compared with normal controls.

Principal Findings

Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2 in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2 were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings.

Conclusions/Significance

Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.  相似文献   

14.
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress.  相似文献   

15.
《Free radical research》2013,47(9):699-709
Abstract

In response to infection, neutrophils employ various strategies to defend against the invading microbes. One of such defense mechanisms is the formation of neutrophil extracellular traps (NETs). Recent studies suggest that reactive oxygen species is a signal critical to NET formation. This prompts us to examine whether neutrophils from individuals with glucose-6-phosphate dehydrogenase (G6PD) Taiwan-Hakka variant, which are prone to oxidative stress generation, have altered ability to form NET. We adopted an image-based method to study the NET formation potential in neutrophils from G6PD-deficient patients. Neutrophils from either normal or G6PD-deficient individuals underwent NETosis in response to phorbol 12-myristate 13-acetate (PMA). The extent of NETosis in the former did not significantly differ from that of the latter. Diphenyleneiodonium sulfate (DPI) and 3-methyladenine (MA) inhibited PMA-stimulated NET formation in these cells, suggesting the involvement of NADPH oxidase and autophagy in the process. Glucose oxidase (GO) and xanthine oxidase/xanthine (XO/X) could induce a similar extent of NET formation in normal and G6PD-deficient neutrophils. GO- or XO-induced NETosis was not inhibitable by MA, implying that reactive oxygen species (ROS) can act as an independent signal for activation of NETosis. Mechanistically, enhanced superoxide production in neutrophils was associated with increases in levels of NAD+ and NADP+, as well as activation of NAD+ kinase. Taken together, these findings suggest that G6PD-deficient neutrophils are as equally efficient as normal cells in NET formation, and their deficiency in G6PD-associated NADPH regeneration capacity is largely compensated for by nicotinamide nucleotide biosynthesis.  相似文献   

16.
Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PCMT; EC 2. 1.1.77) catalyses the methyl esterification of the free alpha-carboxyl group of abnormal L-isoaspartyl residues, which occur spontaneously in protein and peptide substrates as a consequence of molecular ageing. The biological function of this transmethylation reaction is related to the repair or degradation of age-damaged proteins. Methyl ester formation in erythrocyte membrane proteins has also been used as a marker reaction to tag these abnormal residues and to monitor their increase associated with erythrocyte ageing diseases, such as hereditary spherocytosis, or cell stress (thermal or osmotic) conditions. The study shows that levels of L-isoaspartyl residues rise in membrane proteins of human erythrocytes exposed to oxidative stress, induced by t-butyl hydroperoxide or H2O2. The increase in malondialdehyde content confirmed that the cell membrane is a primary target of oxidative alterations. A parallel rise in the methaemoglobin content indicates that proteins are heavily affected by the molecular alterations induced by oxidative treatments in erythrocytes. Antioxidants largely prevented the increase in membrane protein methylation, underscoring the specificity of the effect. Conversely, we found that PCMT activity, consistent with its repair function, remained remarkably stable under oxidative conditions, while damaged membrane protein substrates increased significantly. The latter include ankyrin, band 4.1 and 4.2, and the integral membrane protein band 3 (the anion exchanger). The main target was found to be particularly protein 4.1, a crucial element in the maintenance of membrane-cytoskeleton network stability. We conclude that the increased formation/exposure of L-isoaspartyl residues is one of the major structural alterations occurring in erythrocyte membrane proteins as a result of an oxidative stress event. In the light of these and previous findings, the occurrence of isoaspartyl sites in membrane proteins as a key event in erythrocyte spleen conditioning and hemocatheresis is proposed.  相似文献   

17.
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of the cellular redox balance. The biological effects of G6PD deficiency in nucleated cells were studied using G6PD-deficient human foreskin fibroblasts (HFF). In contrast to that of normal HFF, the doubling time of G6PD-deficient cells increased readily from population doubling level (PDL) 15 to 63. This was accompanied by a significant increase in the percentage of G(1) cells. The slow-down in growth preceded an early entry of these cells into a nondividing state reminiscent of cellular senescence. These cells exhibited a significant increase in level of senescence-associated beta-galactosidase (SA-beta-gal) staining. The importance of G6PD activity in cell growth was corroborated by the finding that ectopic expression of active G6PD in the deficient cells prevented their growth retardation and early onset of senescence. Mechanistically, the enhanced fluorescence in dichlorofluorescin (H(2)DCF)-stained G6PD-deficient cells suggests the possible involvement of reactive oxygen species in senescence. Taken together, our results show that G6PD deficiency predisposes human fibroblasts to retarded growth and accelerated cellular senescence. Moreover, G6PD-deficient HFF provides a useful model system for delineating the effects of redox alterations on cellular processes.  相似文献   

18.
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of cellular redox balance. We previously showed that G6PD-deficient fibroblasts undergo growth retardation and premature cellular senescence. In the present study, we demonstrate abatement of both the intracellular G6PD activity and the ratio NADPH/NADP(+) during the serial passage of G6PD-deficient cells. This was accompanied by a significant increase in the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). This suggests that the lowered resistance to oxidative stress and accumulative oxidative damage may account for the premature senescence of these cells. Consistent with this, the G6PD-deficient cells had an increased propensity for hydrogen peroxide (H(2)O(2))-induced senescence; these cells exhibited such senescent phenotypes as large, flattened morphology and increased senescence-associated beta-galactosidase (SA-beta-Gal) staining. Decreases in both the intracellular G6PD activity and the NADPH/NADP(+) ratio were concomitant with an increase in 8-OHdG level in H(2)O(2)-induced senescent cells. Exogenous expression of G6PD protected the deficient cells from stress-induced senescence. No significant telomere shortening occurred upon repetitive treatment with H(2)O(2). Simultaneous induction of p16(INK4a) and p53 was detected in G6PD-deficient but not in normal fibroblasts during H(2)O(2)-induced senescence. Our findings support the notion that G6PD status, and thus proper redox balance, is a determinant of cellular senescence.  相似文献   

19.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries. (J Histochem Cytochem 57:1003–1011, 2009)  相似文献   

20.
The enzyme variant glucose-6-phosphate dehydrogenase (G6PD) A(-), which gives rise to human glucose-6-phosphate dehydrogenase deficiency, is a protein of markedly reduced structural stability. This variant differs from the normal enzyme, G6PD B, in two amino acid substitutions. A further nondeficient variant, G6PD A, bears only one of these two mutations and is structurally stable. In this study, the synergistic structural defect in recombinant G6PD A(-) was reflected by reduced unfolding enthalpy due to loss of beta-sheet and alpha-helix interactions where both mutations are found. This was accompanied by changes in inner spatial distances between residues in the coenzyme domain and the partial disruption of tertiary structure with no significant loss of secondary structure. However, the secondary structure of G6PD A(-) was qualitatively affected by an increase in beta-sheets substituting beta-turns related to the lower unfolding enthalpy. The structural changes observed did not affect the active site of the mutant proteins, since its spatial position was unmodified. The final result is a loss of folding determinants leading to a protein with decreased intracellular stability. This is suggested as the cause of the enzyme deficiency in the red blood cell, which is unable to perform de novo protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号