首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial hypercholesterolemia (FH) carries an increased vascular risk due to lifelong elevation of the number of circulating low-density lipoprotein (LDL) particles, but also to alterations in triglyceride and high-density lipoprotein (HDL) metabolism. Supplementation with eicosapentaenoic (EPA) or docosahexaenoic (DHA) acids reduced LDL particle number and/or increased LDL size in different populations, but studies in FH are scarce. We investigated cross-sectionally whether intake of EPA and DHA in the usual diet is associated with a less atherogenic lipoprotein profile in subjects with FH (n=215). Lipoprotein particle number and size distributions were assessed with nuclear magnetic resonance spectroscopy. EPA and DHA proportions in serum phosphatidylcholine, a biomarker of fish intake, were determined by gas chromatography. After adjusting for cardiovascular risk factors, including fasting triglycerides, serum phosphatidylcholine EPA (but not DHA) related inversely to medium VLDL, total LDL particle number and very small LDL, resulting in a net direct association with LDL size. Additionally, EPA was directly associated with concentrations of large HDL. We conclude that increased serum phosphatidylcholine EPA derived from seafood intake with the usual diet is associated with a less atherogenic lipoprotein profile in subjects with FH. Increased fish intake and/or EPA supplements might contribute to reduce the residual risk of statin-treated FH subjects.  相似文献   

2.
PURPOSE OF REVIEW: A growing body of data suggests that in addition to LDL-cholesterol concentrations, compositional properties of LDL, including size and fatty acid composition, are important in determining the relative degree of atherogenicity. This review examines current research in this field to evaluate which properties of LDL may most directly influence the risk of coronary heart disease. RECENT FINDINGS: The presence of small dense LDL has been correlated with an increased risk of coronary heart disease, but this has not been shown to be fully independent of related factors such as elevated plasma triacylglycerol concentrations. An increased susceptibility of small dense LDL to in-vitro oxidation has also been demonstrated, but its importance to coronary heart disease risk has not been established. Other studies have found that the presence of enlarged LDL, modified (oleate enriched) fatty acyl composition of LDL, and higher numbers of LDL particles in plasma also are endpoints associated with an increased risk of coronary heart disease. SUMMARY: LDL size may indicate a metabolic condition associated with increased CHD risk as opposed to the direct promotion of atherosclerosis by specific particle types of LDL. In most claims of detrimental effects of small dense LDL, neither LDL particle concentrations nor the fatty acid composition of the particles were established, both factors being important in contributing to the atherogenic potential of LDL. The predisposition to premature coronary heart disease cannot currently be objectively assigned to any one type of LDL particle.  相似文献   

3.
Sphingosine 1-phosphate (S1P) concentration in plasma and serum has been estimated to be within 200-900 nM. Among plasma and serum components, S1P is concentrated in lipoprotein fractions with a rank order of high-density lipoprotein (HDL)>low-density lipoprotein (LDL)>very low-density lipoprotein (VLDL)>lipoprotein-deficient plasma (LPDP) when expressed as the per unit amount of protein. It is well known that LDL, especially oxidized LDL, is closely correlated and HDL is inversely correlated, with the risk of cardiovascular disease, such as atherosclerosis. Evidence was presented that a part of HDL-induced actions previously reported are mediated by the lipoprotein-associated S1P. Furthermore, S1P content in LDL was markedly decreased during its oxidation. This paper will discuss whether S1P is an atherogenic mediator or an anti-atherogenic mediator.  相似文献   

4.
PURPOSE OF REVIEW: The magnitude of the contribution of serum triglycerides to cardiovascular disease risk and the mechanisms by which triglyceride-rich lipoproteins exert their effect on the vascular wall are largely unknown. Postprandial lipemia likewise has been linked to atherosclerosis, but large prospective studies assessing the magnitude of this association are also lacking. Hypertriglyceridemia is characterized by the presence of cholesterol-rich remnant-like lipoproteins and small dense LDL particles, both of which are believed to contribute to cardiovascular disease risk. RECENT FINDINGS: Several large prospective cohort studies and a meta-analysis have been published recently, investigating the association of fasting and nonfasting serum triglycerides with cardiovascular disease. Fasting triglycerides increase the adjusted hazard ratios for cardiovascular disease risk 1.7 x (comparing upper with lower tertile), and nonfasting levels around 2.0 x. Measurement of nonfasting triglycerides may be more feasible and more informative, but standardization of a test meal is necessary. For clinical practice, the concentration of the atherogenic lipoprotein subfractions in hypertriglyceridemia may be reflected best by measuring apolipoprotein B. SUMMARY: Nonfasting triglyceride levels may replace fasting levels in assessing cardiovascular disease risk once standard reference values have been developed. Several atherogenic lipoprotein subfractions can be measured by including apolipoprotein B in addition to HDL, (nonfasting) triglycerides and LDL cholesterol.  相似文献   

5.
Increased plasma cholesterol is a known risk factor for cardiovascular disease. Lipoprotein particles transport both cholesterol and triglycerides through the blood. It is thought that the size distribution of these particles codetermines cardiovascular disease risk. New types of measurements can determine the concentration of many lipoprotein size-classes but exactly how each small class relates to disease risk is difficult to clear up. Because relating physiological process status to disease risk seems promising, we propose investigating how lipoprotein production, lipolysis, and uptake processes depend on particle size. To do this, we introduced a novel model framework (Particle Profiler) and evaluated its feasibility. The framework was tested using existing stable isotope flux data. The model framework implementation we present here reproduced the flux data and derived lipoprotein size pattern changes that corresponded to measured changes. It also sensitively indicated changes in lipoprotein metabolism between patient groups that are biologically plausible. Finally, the model was able to reproduce the cholesterol and triglyceride phenotype of known genetic diseases like familial hypercholesterolemia and familial hyperchylomicronemia. In the future, Particle Profiler can be applied for analyzing detailed lipoprotein size profile data and deriving rates of various lipolysis and uptake processes if an independent production estimate is given.  相似文献   

6.
Phospholipase A2 and small, dense low-density lipoprotein   总被引:10,自引:0,他引:10  
High levels of small, dense LDL in plasma are associated with increased risk for cardiovascular disease. There are some biochemical characteristics that may render small, dense LDL particles more atherogenic than larger, buoyant LDL particles. First, small, dense LDL particles contain less phospholipids and unesterified cholesterol in their surface monolayer than do large, buoyant LDL particles. This difference in lipid content appears to induce changes in the conformation of apolipoprotein B-100, leading to more exposure of proteoglycan-binding regions. This may be one reason for the high-affinity binding of small, dense LDL to arterial proteoglycans. Reduction of the phospholipid content in the surface monolayer LDL by treatment with secretory phospholipase A2 (sPLA2) forms small, dense LDL with an enhanced tendency to interact with proteoglycans. Circulating levels of sPLA2-IIA appears to be an independent risk factor for coronary artery disease and a predictor of cardiovascular events. In addition, in-vivo studies support the hypothesis that sPLA2 proteins contribute to atherogenesis and its clinical consequences. These data suggest that modification of LDL by sPLA2 in the arterial tissue or in plasma may be a mechanism for the generation of atherogenic lipoprotein particles in vivo, with a high tendency to be entrapped in the arterial extracellular matrix.  相似文献   

7.
Testosterone administration to men is known to decrease high-density lipoprotein cholesterol (HDL-C) and the subclasses HDL(2) and HDL(3). It also might increase the number of small, dense, low-density lipoprotein cholesterol (LDL-C) particles in hypogonadal men. The decrease in HDL-C and in LDL-C size is potentially mediated by hepatic lipase activity, which hydrolyzes lipoprotein phospholipids and triacylglycerol. To determine how HDL-C and LDL-C particles are affected by testosterone administration to eugonadal men, testosterone was administered as a supraphysiological dose (600 mg/wk) for 3 wk to elderly, obese, eugonadal men before elective hip or knee surgery, and lipids were measured by routine methods and by density gradient ultracentrifugation. Hepatic lipase activity increased >60% above baseline levels, and HDL-C, HDL(2), and HDL(3) significantly declined in 3 wk. In addition, the LDL-C peak particle density and the amount of LDL-C significantly increased. Testosterone is therefore a potent stimulator of hepatic lipase activity, decreasing HDL-C, HDL(2), and HDL(3) as well as increasing LDL particle density changes, all associated with increased cardiovascular risk.  相似文献   

8.
The concentration of low-density lipoprotein (LDL) cholesterol (C) in plasma is a key determinant of cardiovascular disease risk and human genetic studies have long endeavoured to elucidate the pathways that regulate LDL metabolism. Massive genome-wide association studies (GWASs) of common genetic variation associated with LDL-C in the population have implicated SORT1 in LDL metabolism. Using experimental paradigms and standards appropriate for understanding the mechanisms by which common variants alter phenotypic expression, three recent publications have presented divergent and even contradictory findings. Interestingly, although these reports each linked SORT1 to LDL metabolism, they did not agree on a mechanism to explain the association. Here, we review recent mechanistic studies of SORT1 - the first gene identified by GWAS as a determinant of plasma LDL-C to be evaluated mechanistically.  相似文献   

9.
PURPOSE OF REVIEW: The aim of this article is to review, analyze and interpret the growing body of evidence on circulating oxidized low-density lipoprotein and its relationship to diagnosis and prognosis of cardiovascular disease. RECENT FINDINGS: Previous studies focused on indirect measures of oxidative stress such as susceptibility of low-density lipoprotein to oxidation and measurement of autoantibodies to oxidized low-density lipoprotein. The generation of monoclonal antibodies recognizing distinct oxidation-specific epitopes has allowed the development of sensitive and specific assays to measure circulating oxidized low-density lipoprotein. Recent work in human populations has demonstrated that circulating oxidized low-density lipoprotein is associated with preclinical atherosclerosis, coronary and peripheral arterial atherosclerosis, acute coronary syndromes and vulnerable plaques. Several studies have also suggested that elevated levels of oxidized low-density lipoprotein are a prognostic indicator of cardiovascular outcomes. In addition, it has been shown that lipoprotein(a) is the primary carrier of oxidized phospholipids in the circulation of humans, suggesting additional mechanisms through which lipoprotein(a) may be pro-atherogenic. SUMMARY: Research on circulating oxidized low-density lipoprotein biomarkers is rapidly accelerating and providing novel insights into the pathophysiology of cardiovascular disease. Future studies will further assess the clinical utility of oxidized low-density lipoprotein biomarkers by determining their prognostic value in the diagnosis and prognosis of cardiovascular disease and will also evaluate the relative merit of specific assays by performing comparative studies.  相似文献   

10.
A predominance of small, dense low-density lipoproteins (LDL) is characteristic of the dyslipidemic state seen in type 2 diabetes. However, no study has investigated the association in gestational diabetes mellitus (GDM), which is pathophysiologically similar to type 2 diabetes. We hypothesized that LDL particle size is reduced in GDM cases compared with controls. Gradient gel electrophoresis was used to characterize LDL subclass phenotypes in non-fasting intrapartum plasma from 105 GDM cases and 96 controls. All participants were free of pre-existing diabetes or hypertension. The authors used logistic regression to estimate odds ratios (OR) and 95 % confidence intervals (CI) adjusted for confounders. Women with this phenotype had a significant 4.9-fold (95 % CI: 1.1-23.2) increased risk of GDM compared with those with the large, buoyant phenotype. The magnitude of this association was attenuated when plasma triglyceride and other confounders were included in the model (OR=4.2, 95 % CI: 0.5-39.5). Mean LDL particle size in GDM cases was smaller compared with controls (270.1 vs. 272.7A, p=0.003). The OR of GDM risk was 1.8 (95 % CI: 0.9-3.3) for every 10-A reduction in LDL particle size. Large prospective studies are needed to evaluate the association between smaller LDL particle size in early pregnancy with subsequent GDM risk.  相似文献   

11.
CETP gene variation: relation to lipid parameters and cardiovascular risk   总被引:5,自引:0,他引:5  
PURPOSE OF REVIEW: Over the past decade lowering of low-density lipoprotein-cholesterol levels has been established as the foundation for preventing coronary artery disease, but substantial additional risk reduction remains to be gained by modifying risk factors other than low-density lipoprotein-cholesterol. Raising high-density lipoprotein-cholesterol levels by inhibiting activity of the cholesteryl ester transfer protein (CETP) is a prime target. Research on naturally occurring variants in the CETP gene has yielded numerous insights that have been relevant for understanding lipoprotein metabolism, and crucial to the development of pharmacological CETP inhibition. RECENT FINDINGS: This review discusses a number of recently published studies, including a haplotype analysis of the CETP promoter region confirming that the -629 C-->A variant, not the TaqIB variant, is instrumental in determining CETP activity, as previously suggested. In addition, we discuss a recent meta-analysis which confirms that the I405V and TaqIB variants are indeed associated with lower CETP activity and higher high-density lipoprotein-cholesterol levels. Also, we review two subanalyses of large randomized controlled pravastatin trials which found no evidence for a proposed pharmacogenetic interaction between the CETP TaqIB variant and pravastatin treatment. SUMMARY: The currently available evidence suggests that several genetic variants in the CETP gene are associated with altered CETP plasma levels and activity, high-density lipoprotein-cholesterol plasma levels, low-density lipoprotein and high-density lipoprotein particle size, and perhaps the risk of coronary artery disease. No evidence exists for a pharmacogenetic interaction between the CETP TaqIB variant and pravastatin efficacy.  相似文献   

12.
There is a strong correlation between the level of plasma low-density lipoprotein (LDL) and death by cardiovascular disease (CVD). As a main carrier of cholesterol, a high low-density lipoprotein concentration stimulates atherogenesis by its capacity to become oxidized and to become endocytosed by macrophages in the vessel wall forming cholesterol-rich plaques that are sites for arterial occlusion. New evidence points at a second role of low-density lipoprotein in increasing cardiovascular disease-risk. Contact with low-density lipoprotein induces platelet hypersensitivity to agonists that initiate platelet functions thereby enhancing adhesion, aggregation and secretion of granule contents. The signalling pathways that mediate the priming of platelets by native and oxidized low-density lipoprotein have now been characterized.  相似文献   

13.
Heterogeneity in the size of low-density lipoprotein (LDL) particles was used to identify two distinct patterns based on gradient gel electrophoresis analysis. These two phenotypes, LDL subclass pattern A and pattern B, were characterized by a predominance of large, buoyant LDL particles and small, dense LDL particles, respectively. The inheritance of these LDL subclass patterns was investigated in a sample of 61 healthy families including 301 individuals. LDL subclass pattern B was present in 31% of the subjects, with the prevalence varying by gender, age, and (in women) menopausal status. Complex segregation analysis suggested a major locus controlling LDL subclass patterns. The model providing the best fit to the data included a dominant mode of inheritance with a frequency of .25 for the allele determining LDL subclass pattern B and reduced penetrance for men under age 20 and for premenopausal women. Thus, the allele for the LDL subclass pattern characterized by a predominance of small, dense LDL particles appears to be very common in the population, although not usually expressed until adulthood in men and until after menopause in women. The presence of a major gene controlling LDL subclass could explain much of the familial aggregation of lipid and apolipoprotein levels and may be involved in increased risk of coronary heart disease.  相似文献   

14.
Diabetic dyslipidaemia   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: Diabetic dyslipidaemia is a cluster of plasma lipid and lipoprotein abnormalities that are metabolically interrelated. The increase of large type 1 very low density lipoprotein particles in type 2 diabetes initiates a sequence of events that generates atherogenic remnants, small dense low-density lipoprotein and small dense high-density lipoprotein particles. Thus, it is of great importance to elucidate the mechanisms behind the overproduction of large very low density lipoprotein particles in diabetic dyslipidaemia. This review discusses the pathophysiology of very low density lipoprotein metabolism in type 2 diabetes and recent concepts of lipid management of diabetic dyslipidaemia. RECENT FINDINGS: Results indicate that triglyceride and apolipoprotein B production in types 1 and 2 very low density lipoprotein are significantly correlated, suggesting a coupling of the two processes governing the metabolism of these lipoprotein subpopulations. Insulin resistance, hyperglycaemia, and liver fat were associated with excess hepatic production of type 1 but not type 2 very low density lipoprotein particles. These data provide support for the independent regulation of types 1 and 2 very low density lipoprotein apolipoprotein B production. SUMMARY: Recent data suggest that the assembly of very low density lipoprotein is fundamentally altered in type 2 diabetes, explaining the overproduction of large type 1 very low density lipoprotein as well as the inability of insulin to suppress production of type 1 very low density lipoprotein in type 2 diabetes. Future discoveries hopefully will delineate the regulatory steps to allow more targeted treatment of diabetic dyslipidaemia.  相似文献   

15.
Absorption, metabolism and antioxidative effects of tea catechin in humans   总被引:4,自引:0,他引:4  
Green tea is consumed as a popular beverage in Japan and throughout the world. During the past decade, epidemiological studies have shown that tea catechin intake is associated with lower risk of cardiovascular disease. In vitro biochemical studies have reported that catechins, particularly epigallocatechin-3-gallate (EGCg), help to prevent oxidation of plasma low-density lipoprotein (LDL). LDL oxidation has been recognized to be an important step in the formation of atherosclerotic plaques and subsequent cardiovascular disease. Metabolic studies have shown that EGCg supplement is incorporated into human plasma at a maximum concentration of 4400 pmol/mL. Such concentrations would be enough to exert antioxidative activity in the blood stream. The potent antioxidant property of tea catechin may be beneficial in preventing the oxidation of LDL. It is of interest to examine the effect of green tea catechin supplementation on antioxidant capacity of plasma in humans by measuring plasma phosphatidylcholine hydroperoxide (PCOOH) as a marker of oxidized lipoproteins.  相似文献   

16.
Objective: Measures of central obesity are strongly correlated with cardiovascular disease (CVD) risk. Although waist circumference (WC) is a commonly used measure of central obesity, there is no standard measurement location. We examined two WC locations to determine which was more highly correlated with CVD risk factors and metabolic syndrome (MS). Research Methods and Procedures: WC measures were taken on 266 sedentary, overweight men and women 45 to 60 years old. Intravenous glucose tolerance tests, fasting plasma lipid analysis, and computed tomography scans were conducted. Correlational analyses followed by the Test for Equal Correlations determined whether one WC measure better correlated with the cardiovascular risk factors. Results: In women, minimal waist had higher correlation coefficients than umbilical waist for all eight variables presented. High‐density lipoprotein‐cholesterol, low‐density lipoprotein particle size, and MS score were significantly correlated with minimal waist, but not umbilical waist. For high‐density lipoprotein size and insulin sensitivity, minimal waist was a better correlate, although the difference between waist measures only approached statistical significance (p < 0.06). In men, minimal waist had a higher correlation coefficient than umbilical waist for insulin sensitivity, fasting insulin, and visceral adipose tissue. Additionally, minimal waist was significantly correlated with MS in men and umbilical waist was not. For both genders, minimal waist was more highly correlated with visceral adipose tissue than umbilical waist. Discussion: For every metabolic variable presented, minimal WC was more highly correlated with CVD risk than was umbilical WC in women. The data for women indicate that WC location is important when determining CVD risk. In men, minimal waist was better, although the data were less compelling.  相似文献   

17.
PURPOSE OF REVIEW: Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipoprotein metabolism. It is thus vital to understand their pathophysiology and determine which factors influence their functioning in type 2 diabetes. RECENT FINDINGS: Cholesteryl ester transfer protein-mediated transfer is increased in diabetic patients and contributes to low plasma high-density lipoprotein cholesterol levels. Apolipoproteins A-I, A-II and E are components of the donor lipoprotein particles that participate in the transfer of cholesteryl esters from high-density lipoprotein to apolipoprotein B-containing lipoproteins. Current evidence for functional roles of apolipoproteins C-I, F and A-IV as modulators of cholesteryl ester transfer is discussed. Phospholipid transfer protein activity is increased in diabetic patients and may contribute to hepatic very low-density lipoprotein synthesis and secretion and vitamin E transfer. Apolipoprotein E could stimulate the phospholipid transfer protein-mediated transfer of surface fragments of triglyceride-rich lipoproteins to high-density lipoprotein, and promote high-density lipoprotein remodelling. SUMMARY: Both phospholipid and cholesteryl ester transfer proteins are important in very low and high-density lipoprotein metabolism and display concerted actions in patients with type 2 diabetes.  相似文献   

18.
Coronary heart disease risk correlates directly with plasma concentrations of lipoprotein(a) (Lp(a)), a low-density lipoprotein-like particle distinguished by the presence of the glycoprotein apolipoprotein(a) (apo(a)), which is bound to apolipoprotein B-100 (apoB-100) by disulfide bridges. Size isoforms of apo(a) are inherited as Mendelian codominant traits and are associated with variations in the plasma concentration of lipoprotein(a). Plasminogen and apo(a) show striking protein sequence homology, and their genes both map to chromosome 6q26-27. In a large family with early coronary heart disease and high plasma concentrations of Lp(a), we found tight linkage between apo(a) size isoforms and a DNA polymorphism in the plasminogen gene; plasma concentrations of Lp(a) also appeared to be related to genetic variation at the apo(a) locus. We found free recombination between the same phenotype and alleles of the apoB DNA polymorphism. This suggests that apo(a) size isoforms and plasma lipoprotein(a) concentrations are each determined by genetic variation at the apo(a) locus.  相似文献   

19.
While conventional LDL-C, HDL-C, and triglyceride measurements reflect aggregate properties of plasma lipoprotein fractions, NMR-based measurements more accurately reflect lipoprotein particle concentrations according to class (LDL, HDL, and VLDL) and particle size (small, medium, and large). The concentrations of these lipoprotein sub-fractions may be related to risk of cardiovascular disease and related metabolic disorders. We performed a genome-wide association study of 17 lipoprotein measures determined by NMR together with LDL-C, HDL-C, triglycerides, ApoA1, and ApoB in 17,296 women from the Women''s Genome Health Study (WGHS). Among 36 loci with genome-wide significance (P<5×10−8) in primary and secondary analysis, ten (PCCB/STAG1 (3q22.3), GMPR/MYLIP (6p22.3), BTNL2 (6p21.32), KLF14 (7q32.2), 8p23.1, JMJD1C (10q21.3), SBF2 (11p15.4), 12q23.2, CCDC92/DNAH10/ZNF664 (12q24.31.B), and WIPI1 (17q24.2)) have not been reported in prior genome-wide association studies for plasma lipid concentration. Associations with mean lipoprotein particle size but not cholesterol content were found for LDL at four loci (7q11.23, LPL (8p21.3), 12q24.31.B, and LIPG (18q21.1)) and for HDL at one locus (GCKR (2p23.3)). In addition, genetic determinants of total IDL and total VLDL concentration were found at many loci, most strongly at LIPC (15q22.1) and APOC-APOE complex (19q13.32), respectively. Associations at seven more loci previously known for effects on conventional plasma lipid measures reveal additional genetic influences on lipoprotein profiles and bring the total number of loci to 43. Thus, genome-wide associations identified novel loci involved with lipoprotein metabolism—including loci that affect the NMR-based measures of concentration or size of LDL, HDL, and VLDL particles—all characteristics of lipoprotein profiles that may impact disease risk but are not available by conventional assay.  相似文献   

20.
PURPOSE OF REVIEW: Diabetic dyslipidaemia, among the main factors contributing to vascular risk in type 2 diabetes, is characterized by hypertriglyceridaemia, low HDL-cholesterol and increased prevalence of small dense LDL particles. Because fibrates have positive effects on triglycerides, HDL-cholesterol and LDL particle size, they may be an appropriate treatment for diabetic dyslipidaemia. Statins have been shown to diminish significantly the risk for coronary disease in patients with type 2 diabetes, and so what are the real effects of fibrates on cardiovascular risk in type 2 diabetes? RECENT FINDINGS: Although statins reduce the incidence of coronary disease in type 2 diabetes, data from clinical trials demonstrate 'residual' cardiovascular risk in these patients treated with statins. Clinical trials with fibrates show that they are particularly effective in reducing cardiovascular risk in patients with type 2 diabetes/metabolic syndrome and in those exhibiting the lipid abnormalities typical of diabetic dyslipidaemia (elevated triglycerides, low HDL-cholesterol). SUMMARY: Data on the effects of fibrates on cardiovascular risk in diabetes were obtained from subgroup analyses. Thus far, the only study performed specifically in patients with type 2 diabetes is the angiographic Diabetes Atherosclerosis Intervention Study which demonstrated a significant reduction in progression of atherosclerosis in patients receiving fenofibrate, but it was not powered to analyse the effects of fibrates on clinical outcomes. This is why the Fenofibrate Intervention and Event Lowering in Diabetes study is needed; it will provide robust data on the ability of fibrates to reduce cardiovascular risk in patients with type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号