首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune sera from mice immunized with the 143/140 kDa protein have been shown to partially block erythrocyte invasion by P. knowlesi merozoites. Therefore, immunoelectron microscopy utilizing ultracryomicrotomy, antibody to 143/140 kDa protein, and protein A gold particles were used to determine the precise localization of this protein in malarial parasites. Gold particles were not seen associated with young trophozoites but appeared in the parasite cytoplasm as the parasites grew to multi-nucleate schizonts. In presegmenter-schizonts, gold particles were associated with the well-developed endoplasmic reticulum, the parasite plasma membrane, and the parasitophorous vacuole membrane. The surface of merozoites was covered with gold particles. Maurer's clefts, which appeared in Plasmodium infected erythrocytes, were also associated with gold particles. These observations suggest that 143/140 kDa protective malarial proteins may be synthesized in the endoplasmic reticulum of P. knowlesi schizonts before being transported to the surface of the schizonts and merozoites. Shedding of the merozoite surface coat may be responsible for the presence of the 143/140 kDa proteins in the parasitophorous vacuole and Maurer's clefts.  相似文献   

2.
Malaria parasites export proteins beyond their own plasma membrane to locations in the red blood cells in which they reside. Maurer's clefts are parasite-derived structures within the host cell cytoplasm that are thought to function as a sorting compartment between the parasite and the erythrocyte membrane. However, the genesis of this compartment and the signals directing proteins to the Maurer's clefts are not known. We have generated Plasmodium falciparum-infected erythrocytes expressing green fluorescent protein (GFP) chimeras of a Maurer's cleft resident protein, the membrane-associated histidine-rich protein 1 (MAHRP1). Chimeras of full-length MAHRP1 or fragments containing part of the N-terminal domain and the transmembrane domain are successfully delivered to Maurer's clefts. Other fragments remain trapped within the parasite. Fluorescence photobleaching and time-lapse imaging techniques indicate that MAHRP1-GFP is initially trafficked to isolated subdomains in the parasitophorous vacuole membrane that appear to represent nascent Maurer's clefts. The data suggest that the Maurer's clefts bud from the parasitophorous vacuole membrane and diffuse within the erythrocyte cytoplasm before taking up residence at the cell periphery.  相似文献   

3.
Maurer's clefts are single-membrane-limited structures in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum. The currently accepted model suggests that Maurer's clefts act as an intermediate compartment in protein transport processes from the parasite across the cytoplasm of the host cell to the erythrocyte surface, by receiving and delivering protein cargo packed in vesicles. This model is mainly based on two observations. Firstly, single-section electron micrographs have shown, within the cytoplasm of infected erythrocytes, stacks of long slender membranes in close vicinity to round membrane profiles considered to be vesicles. Secondly, proteins that are transported from the parasite to the erythrocyte surface as well as proteins facilitating the budding of vesicles have been found in association with Maurer's clefts. Verification of this model would be greatly assisted by a better understanding of the morphology, dimensions and origin of the Maurer's clefts. Here, we have generated and analyzed three-dimensional reconstructions of serial ultrathin sections covering segments of P. falciparum-infected erythrocytes of more than 1 microm thickness. Our results indicate that Maurer's clefts are heterogeneous in structure and size. We have found Maurer's clefts consisting of a single disk-shaped cisternae localized beneath the plasma membrane. In other examples, Maurer' clefts formed an extended membranous network that bridged most of the distance between the parasite and the plasma membrane of the host erythrocyte. Maurer's cleft membrane networks were composed of both branched membrane tubules and stacked disk-shaped membrane cisternae that eventually formed whorls. Maurer's clefts were visible in other cells as a loose membrane reticulum composed of scattered tubular and disk-shaped membrane profiles. We have not seen clearly discernable isolated vesicles in the analyzed erythrocyte segments suggesting that the current view of how proteins are transported within the Plasmodium-infected erythrocyte may need reconsideration.  相似文献   

4.
We have characterized the association of the intermediate filament protein, vimentin, with the plasma membrane, using radioiodinated lens vimentin and various preparations of human erythrocyte membrane vesicles. Inside-out membrane vesicles (IOVs), depleted of spectrin and actin, bind I125-vimentin in a saturable manner unlike resealed, right-side-out membranes which bind negligible amounts of vimentin in an unsaturable fashion. The binding of vimentin to IOVs is abolished by trypsin or acid treatment of the vesicles. Extraction of protein 4.1 or reconstitution of the membranes with purified spectrin do not basically affect the association. However, removal of ankyrin (band 2.1) significantly lowers the binding. Upon reconstitution of depleted vesicles with purified ankyrin, the vimentin binding function is restored. If ankyrin is added in excess the binding of vimentin to IOVs is quantitatively inhibited, whereas protein 4.1, the cytoplasmic fragment of band 3, band 6, band 4.5 (catalase), or bovine serum albumin do not influence it. Preincubation of the IOVs with a polyclonal anti-ankyrin antibody blocks 90% of the binding. Preimmune sera and antibodies against spectrin, protein 4.1, glycophorin A, and band 3 exhibit no effect. On the basis of these data, we propose that vimentin is able to associate specifically with the erythrocyte membrane skeleton and that ankyrin constitutes its major attachment site.  相似文献   

5.
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.  相似文献   

6.
During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane.  相似文献   

7.
Discovered in 1902 by Georg Maurer as a peculiar dotted staining pattern observable by light microscopy in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum, the function of Maurer's clefts have remained obscure for more than a century. The growing interest in protein sorting and trafficking processes in malarial parasites has recently aroused the Maurer's clefts from their deep slumber. Mounting evidence suggests that Maurer's clefts are a secretory organelle, which the parasite establishes within its host erythrocyte, but outside its own confines, to route parasite proteins across the host cell cytoplasm to the erythrocyte surface where they play a role in nutrient uptake and immune evasion processes. Moreover, Maurer's clefts seem to play a role in cell signaling, merozoite egress, phospholipid biosynthesis and, possibly, other biochemical pathways. Here, we review our current knowledge of the ultrastructure of Maurer's clefts, their proteinaceous composition and their function in protein trafficking.  相似文献   

8.
The Plasmodium falciparum Maurer's clefts in 3D   总被引:1,自引:0,他引:1  
In 1902, the German physician Georg Maurer discovered a dotted staining pattern within the cytoplasm of Plasmodium falciparum infected erythrocytes that, according to the tradition at the time, was named in his honour. The significance of Georg Maurer's discovery remained unrecognized for almost a century. Only recently are Maurer's clefts appreciated as a novel type of secretory organelle. Established by the malaria parasite within its host cell, Maurer's clefts play an essential role in directing proteins from the parasite to the erythrocyte surface. In this issue of Molecular Microbiology, Hanssen et al. report on the three dimensional structure of Maurer's clefts, as determined by electron tomography. The data presented suggest that Maurer's clefts are connected to both the parasitophorous vacuolar and the erythrocyte plasma membrane, however, no continuum exists that would allow lipids or proteins to freely flow between these three compartments. This seminal work, which stands in the tradition of Georg Maurer's original discovery, represents a milestone in our understanding of the structure and function of this fascinating organelle.  相似文献   

9.
During the maturation of intracellular asexual stages of Plasmodium falciparum parasite-encoded proteins are exported into the erythrocyte cytosol. A number of these parasite proteins attach to the host cell cytoskeleton and facilitate transformation of a disk-shaped erythrocyte into a rounded and more rigid infected erythrocyte able to cytoadhere to the vasculature. Knob formation on the surface of infected erythrocytes is critical for this cytoadherence to the host endothelium. P. falciparum proteins have been identified that localize to the parasite-infected erythrocyte membrane: the variant cytoadherence ligand erythrocyte membrane protein 1 (PfEMP1), the knob-associated histidine-rich protein (KAHRP) and the erythrocyte membrane protein 3 (PfEMP3). In this study, we have generated parasites expressing PfEMP3-green fluorescent protein chimeras and identified domains involved in entry to the secretory pathway, export across the parasitophorous vacuolar membrane and attachment to Maurer's clefts and the erythrocyte membrane. Solubility assays, fluorescence photobleaching experiments and immunogold electron microscopy suggest that the exported chimeric proteins are trafficked in a complex rather than in vesicles. This study characterizes elements involved in the tight but transient binding of PfEMP3 to Maurer's clefts and shows that the same elements are necessary for correct assembly under the erythrocyte membrane.  相似文献   

10.
An increase in the intracellular concentration of Ca2+ in human erythrocytes results in the formation of γ-glutamyl-?-lysine cross-linked membrane protein polymers. Following solubilization of the membranes with SDS, these polymers can be isolated on a Lubrol-containing sucrose gradient. Immunoelectrophoresis of the polymeric material with a polyspecific rabbit antibody against human ghosts gave rise to a single, but heterogeneous, precipitate. The polymer was amphiphilic and, on addition to Triton-solubilized erythrocyte membrane proteins, it coprecipitated with spectrin. When the antighost antibody was absorbed with the polymer prior to cross immunoelectrophoresis of normal erythrocyte membrane proteins, the precipitates of glycophorin, acetylcholinesterase, and hemoglobin were normal, whereas the anti-body liters against band 3 protein, spectrin, and ankyrin became reduced. Furthermore, a rabbit antibody raised against the isolated human polymer reacted selectively with the same three membrane proteins. No reactions occurred with lysate proteins.  相似文献   

11.
A novel method was validated for the efficient distinction between malaria parasite-derived and host cell proteins in mass spectrometry analyses. This method was applied to a ghost fraction from Plasmodium falciparum-infected erythrocytes containing the red blood cell plasma membrane, the erythrocyte submembrane skeleton, and the Maurer's clefts, a Golgi-like apparatus linked to and addressing parasite proteins to the host cell surface. This method allowed the identification of 78 parasite proteins. Among these we identified seven novel proteins of the Maurer's clefts based on immunofluorescence studies and proteinase K digestion assays. The products of six contiguous genes located on chromosome 5 were identified, and the location within the Maurer's clefts was established for two of them. This suggests a clustering of genes encoding Maurer's cleft proteins. Our study sheds new light on the biological function of the Maurer's clefts, which are central to the pathogenesis and to the intraerythrocytic development of P. falciparum.  相似文献   

12.
Ultrastructure of malaria-infected erythrocytes   总被引:7,自引:0,他引:7  
C T Atkinson  M Aikawa 《Blood cells》1990,16(2-3):351-368
Knobs, caveolae, caveola-vesicle complexes, cytoplasmic clefts, and electron-dense material are five major ultrastructural changes found in the membrane skeleton and cytoplasm of erythrocytes infected with species of primate malaria. Knobs are electron-dense, conical evaginations of the erythrocyte surface, which are believed to mediate cytoadherence and sequestration of Plasmodium falciparum-infected erythrocytes. Caveolae and caveola-vesicle complexes are flask-shaped invaginations of the membrane skeleton, which may be involved in the uptake or export of host- or parasite-derived substances. Cytoplasmic clefts are flattened or circular membranous structures found in the erythrocyte cytoplasm between the intracellular parasite and the host cell surface. The clefts are variable in length and bounded by two or more membranes. Fine, granular electron-dense material is often found on the cytoplasmic face of clefts or in amorphous packets in the erythrocyte cytoplasm. Immunocytochemistry has demonstrated that all of these ultrastructural changes are associated with the trafficking and interaction of specific malarial antigens with the host erythrocyte.  相似文献   

13.
The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized-particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum.  相似文献   

14.
Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.  相似文献   

15.
We have applied several immunolabeling techniques using a monoclonal antibody to a Plasmodium falciparum antigen to differentiate morphologically dissimilar membranous structures present in infected erythrocytes. Evidence is presented that cytoplasmic clefts, multimembranous structures and vesicles within the infected cell originate from the parasitophorous vacuole membrane by a process described as budding off. The parasitophorous vacuole membrane and related structures in infected, parasitized erythrocytes reacted with the cyanine dye Merocyanine 540, demonstrating that they are accessible to molecules from the extracellular environment. Immunogold labeling of freeze-fractured preparations and of thin sections of parasitized cells using pre- and post-embedding techniques revealed that each of the membranous structures carried a common parasite antigen, QF 116, which was identified by monoclonal antibody 8E7/55.  相似文献   

16.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane. Upon removal by trypsin treatment, the surface-exposed population of PfEMP1 is not replenished during subsequent culture indicating that there is no cycling of PfEMP1 between the erythrocyte surface and an intracellular compartment. The role of Maurer's clefts as an intermediate sorting compartment in trafficking of PfEMP1 was investigated using immunoelectron microscopy and proteolytic digestion of streptolysin O-permeabilized parasitized erythrocytes. We show that PfEMP1 is inserted into the Maurer's cleft membrane with the C-terminal domain exposed to the erythrocyte cytoplasm, whereas the N-terminal domain is buried inside the cleft. Transfer of PfEMP1 to the erythrocyte surface appears to involve electron-lucent extensions of the Maurer's clefts. Thus, we have delineated some important aspects of the unusual trafficking mechanism for delivery of this critical parasite virulence factor to the erythrocyte surface.  相似文献   

17.
The intracellular development of the erythrocytic stage of the malarial parasite (merozoite) is initiated by the attachment of the parasite to the erythrocyte surface. This paper describes an assay system to investigate Plasmodium falciparum merozoite entry into the host cell and reports on three observations regarding this interaction. (a) Merozoites do not invade human erythrocytes treated with either trypsin or neuraminidase, and both enzymes partially cleave glycophorin A, the major erythrocyte surface sialoglycoprotein. (b) A membrane protein fraction containing glycophorin A will, at low concentrations, inhibit the invasion of isolated merozoites into erythrocytes; no other fractions of membrane proteins have appreciable effects on the reinvasion. (c) Merozoites do not reinvade erythrocytes preincubated with F ab' fragments of antibody prepared against glycophorin A. Together, these three observations imply a role for glycophorin A in the attachment of the malarial parasite to the erythrocyte surface.  相似文献   

18.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

19.
After invading human erythrocytes, the malarial parasite Plasmodium falciparum, initiates a remarkable process of secreting proteins into the surrounding erythrocyte cytoplasm and plasma membrane. One of these exported proteins, the knob-associated histidine-rich protein (KAHRP), is essential for microvascular sequestration, a strategy whereby infected red cells adhere via knob structures to capillary walls and thus avoid being eliminated by the spleen. This cytoadherence is an important factor in many of the deaths caused by malaria. Green fluorescent protein fusions and fluorescence recovery after photobleaching were used to follow the pathway of KAHRP deployment from the parasite endomembrane system into an intermediate depot between parasite and host, then onwards to the erythrocyte cytoplasm and eventually into knobs. Sequence elements essential to individual steps in the pathway are defined and we show that parasite-derived structures, known as Maurer's clefts, are an elaboration of the canonical secretory pathway that is transposed outside the parasite into the host cell, the first example of its kind in eukaryotic biology.  相似文献   

20.
Early development of Plasmodium falciparum within the erythrocyte is characterized by the large-scale export of proteins to the host cell. In many cases, export is mediated by a short sequence called the Plasmodium export element (PEXEL) or vacuolar transport signal; however, a number of previously characterized exported proteins do not contain such an element. In this study, we investigated the mechanisms of export of the PEXEL-negative ring exported protein 1 (REX1). This protein localizes to the Maurer's clefts, parasite-induced structures in the host-cell cytosol. Transgenic parasites expressing green fluorescent protein–REX1 chimeras revealed that the single hydrophobic stretch plus an additional 10 amino acids mediate the export of REX1. Biochemical characterization of these chimeras indicated that REX1 was exported as a soluble protein. Inclusion of a sequence containing a predicted coiled-coil motif led to the correct localization of REX1 at the Maurer's clefts, suggesting that association with the clefts occurs at the final stage of protein export only. These results indicate that PEXEL-negative exported proteins can be exported in a soluble state and that sequences without any apparent resemblance to a PEXEL motif can mediate export across the parasitophorous vacuole membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号