首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex low-repetitive human DNA probe (BAC RP11-35B4) together with two microdissection-derived region-specific probes of the multicolor banding (MCB) probe-set for chromosome 1 were used to re-analyze the evolution of human chromosome 1 in comparison to four ape species. BAC RP11-35B4 derives from 1q21 and contains 143 kb of non-repetitive DNA; however, it produces three specific FISH signals in 1q21, 1p12 and 1p36.1 of Homo sapiens (HSA). Human chromosome 1 was studied in comparison to its homologues in Hylobates lar (HLA), Pongo pygmaeus (PPY), Gorilla gorilla (GGO) and Pan troglodytes (PTR). A duplication of sequences homologous to human 1p36.1 could be detected in PPY plus an additional signal on PPY 16q. The region homologous to HSA 1p36.1 is also duplicated in HLA, and split onto chromosomes 7q and 9p; the region homologous to HSA 1q21/1p12 is present as one region on 5q. Additionally, the breakpoint of a small pericentric inversion in the evolution of human chromosome 1 compared to other great ape species could be refined. In summary, the results obtained here are in concordance with previous reports; however, there is evidence for a deletion of regions homologous to human 1p34.2-->p34.1 during evolution in the Pongidae branch after separation of PPY.  相似文献   

2.
A locus harboring a human endogenous retroviral LTR (long terminal repeat) was mapped on the short arm of human chromosome 7 (7p22), and its evolutionary history was investigated. Sequences of two human genome fragments that were homologous to the LTR-flanking sequences were found in human genome databases: (1) an LTR-containing DNA fragment from region 3p13 of the human genome, which includes clusters of olfactory receptor genes and pseudogenes; and (2) a fragment of region 21q22.1 lacking LTR sequences. PCR analysis demonstrated that LTRs with highly homologous flanking sequences could be found in the genomes of human, chimp, gorilla, and orangutan, but were absent from the genomes of gibbon and New World monkeys. A PCR assay with a primer set corresponding to the sequence from human Chr 3 allowed us to detect LTR-containing paralogous sequences on human chromosomes 3, 4, 7, and 11. The divergence times for the LTR-flanking sequences on chromosomes 3 and 7, and the paralogous sequence on chromosome 21, were evaluated and used to reconstruct the order of duplication events and retroviral insertions. (1) An initial duplication event that occurred 14-17 Mya and before LTR insertion - produced two loci, one corresponding to that located on Chr 21, while the second was the ancestor of the loci on chromosomes 3 and 7. (2) Insertion of the LTR (most probably as a provirus) into this ancestral locus took place 13 Mya. (3) Duplication of the LTR-containing ancestral locus occurred 11 Mya, forming the paralogous modern loci on Chr 3 and 7.  相似文献   

3.
We report the molecular analysis of a 130-kb DNA region containing a junction between beta and non-beta satellite DNA from chromosome 15p. The genomic region is characterized by beta satellite blocks intermingled with variants of the D4Z4 repeat, and duplicons from 4q24 and 4q35. Besides the p-arm of acrocentric chromosomes, the duplicons showed a wide genomespread involving pericentromeric, sub-telomeric, and interstitial regions. In this regard, the paralogous sequences were characterized by a high similarity index (96%), thus indicating a recent transposition during the evolution. The acrocentrics differedwith regard to the location of the 4q24 paralogous region, since it mapped on the p-arm of chromosomes 13-15 and 21, but only on 22q11.2. Conversely, the 4q35 duplication marked the p-arm of all the acrocentrics. In different individuals, the short arm of acrocentric chromosomes revealed a great variability of sequence representation and location at p11 and/or p13 for both the 4q24 and 4q35 duplications. The studied genomic region from chromosome 15p, of which a contig of approximately 200 kb has been derived, could lead to more detailed investigations into the sequence organization and possible biological function of chromosome regions that are located close to the rDNA array.  相似文献   

4.
The subtelomeric regions of human chromosomes are comprised of sequence homologies shared between distinct subsets of chromosomes. In the course of developing a set of unique human telomere clones, we identified many clones containing such shared homologies, characterized by the presence of cross-hybridization signals on one or more telomeres in a fluorescence in situ hybridization (FISH) assay. We studied the evolutionary origin of seven subtelomeric clones by performing comparative FISH analysis on a primate panel that included great apes and Old World monkeys. All clones tested showed a single hybridization site in Old World monkeys that corresponded to one of the orthologous human sites, thus indicating the ancestral origin. The timing of the duplication events varied among the subtelomeric regions, from approximately 5 to approximately 25 million years ago. To examine the origin of and mechanism for one of these subtelomeric duplications, we compared the sequence derived from human 2q13--an ancestral fusion site of two great ape telomeric regions--with its paralogous subtelomeric sequences at 9p and 22q. These paralogous regions share large continuous homologies and contain three genes: RABL2B, forkhead box D4, and COBW-like. Our results provide further evidence for subtelomeric-mediated genomic duplication and demonstrate that these segmental duplications are most likely the result of ancestral unbalanced translocations that have been fixed in the genome during recent primate evolution.  相似文献   

5.
In an effort to identify regions on chromosome 18 that may be critical in the appearance of the Edwards syndrome phenotype, we have analyzed six patients with partial duplication of chromosome 18. Four of the patients have duplications involving the distal half of 18q (18q21.1-qter) and are very mildly affected. The remaining two patients have most of 18q (18q12.1-qter) duplicated, are severely affected, and have been diagnosed with Edwards syndrome. We have employed FISH, using DNA probes from a chromosome 18-specific library, for the precise determination of the duplicated material in each of these patients. The clinical features and the extent of the chromosomal duplication in these patients were compared with four previously reported partial trisomy 18 patients, to identify regions of chromosome 18 that may be responsible for certain clinical features of trisomy 18. The comparative analysis confirmed that there is no single region on 18q that is sufficient to produce the trisomy 18 phenotype and identified two regions on 18q that may work in conjunction to produce the Edwards syndrome phenotype. In addition, correlative analysis indicates that duplication of 18q12.3-q22.1 may be associated with more severe mental retardation in trisomy 18 individuals.  相似文献   

6.
Partial duplication of 11q is related to several malformations like growth retardation, intellectual disability, hypoplasia of corpus callosum, short nose, palate defects, cardiac, urinary tract abnormalities and neural tube defects. We have studied the clinical and molecular characteristics of a patient with severe intellectual disabilities, dysmorphic features, congenital inguinal hernia and congenital cerebral malformation which is referred to as cytogenetic exploration. We have used FISH and array CGH analysis for a better understanding of the double chromosomic aberration involving a 7p microdeletion along with a partial duplication of 11q due to adjacent segregation of a paternal reciprocal translocation t(7;11)(p22;q21) revealed after banding analysis. The patient's karyotype formula was: 46,XY,der(7)t(7;11)(p22;q21)pat. FISH study confirmed these rearrangement and array CGH technique showed precisely the loss of at least 140 Kb on chromosome7p22.3pter and 33.4 Mb on chromosome11q22.1q25. Dysmorphic features, severe intellectual disability and brain malformations could result from the 11q22.1q25 trisomy. Our study provides an additional case for better understanding and delineating the partial duplication 11q.  相似文献   

7.
Physical mapping across a duplication can be a tour de force if the region is larger than the size of a bacterial clone. This was the case of the 170- to 275-kb duplication present on the long arm of chromosome 21 in normal human at 21q11.1 (proximal region) and at 21q22.1 (distal region), which we described previously. We have constructed sequence-ready contigs of the two copies of the duplication of which all the clones are genuine representatives of one copy or the other. This required the identification of four duplicon polymorphisms that are copy-specific and nonallelic variations in the sequence of the STSs. Thirteen STSs were mapped inside the duplicated region and 5 outside but close to the boundaries. Among these STSs 10 were end clones from YACs, PACs, or cosmids, and the average interval between two markers in the duplicated region was 16 kb. Eight PACs and cosmids showing minimal overlaps were selected in both copies of the duplication. Comparative sequence analysis along the duplication showed three single-basepair changes between the two copies over 659 bp sequenced (4 STSs), suggesting that the duplication is recent (less than 4 mya). Two CpG islands were located in the duplication, but no genes were identified after a 36-kb cosmid from the proximal copy of the duplication was sequenced. The homology of this chromosome 21 duplicated region with the pericentromeric regions of chromosomes 13, 2, and 18 suggests that the mechanism involved is probably similar to pericentromeric-directed mechanisms described in interchromosomal duplications.  相似文献   

8.
9.
C4 and CYP21 are two adjacent, but functionally unrelated genes residing in the middle of the mammalian major histocompatibility complex (Mhc). The C4 gene codes for the fourth component of the complement cascade, whereas the CYP21 gene specifies an enzyme (cytochrome P450c21) of the glucocorticoid and mineralocorticoid pathways. The genes occur frequently in multiple copies on a single chromosome arranged in the order C4 ... CYP21 ... C4 ... CYP21. The unit of duplication (a module) is the C4-CYP21 gene pair. We sequenced the flanking regions of the C4-CYP21 modules and the intermodular regions of the chimpanzee, gorilla, and orangutan, as well as the intermodular region of an Old World monkey, the pigtail macaque. By aligning the sequences, we could identify the duplication breakpoints in these species. The breakpoint turned out to be at exactly the same position as that found previously in humans. The sequences flanking paralogous genes in the same species were found to be more similar to one another than sequences flanking orthologous genes in different species. We interpret these results as indicating that the original (primigenial) duplication occurred before the separation of apes from Old World monkeys more than 23 million years ago. The nature of the sequence at the breakpoint suggests that the duplication occurred by nonhomologous recombination. Since then, the C4-CYP21 haplotypes have been expanding and contracting by homologous crossing over which has homogenized the sequences in each species. We speculate that the reason for the concerted evolution of the primate C4-CYP21 region may be a requirement for the coevolution of certain components of the complement pathway, including the C4 component. We contrast the evolution of the C4-CYP21 region with that of other Mhc regions.  相似文献   

10.

Background  

The human chromosomes 2q, 7, 12q and 17q show extensive intra-genomic homology, containing duplicate, triplicate and quadruplicate paralogous regions centered on the HOX gene clusters. The fact that two or more representatives of different gene families are linked with HOX clusters is taken as evidence that these paralogous gene sets might have arisen from a single chromosomal segment through block or whole chromosome duplication events. This would imply that the constituent genes including the HOX clusters reflect the architecture of a single ancestral block (before vertebrate origin) where all of these genes were linked in a single copy.  相似文献   

11.
Complete monosomy mosaic of chromosome 21 is a rare disorder. The syndromic features are highly variable. This study describes a girl of Mexican origin with complete monosomy 21 in mosaicism with novel findings, including cortical atrophy, macrostomia, pectum excavatum and immune deficiencies. Parental karyotypes were normal. FISH analysis with probes from 21q22.1–q22.2 region and centromere of X DNA probe was performed on peripheral blood lymphocytes whereas 21q22.1–q22.2 and 21q, 4p, 4q subtelomeric DNA probes were tested in fibroblasts. We propose that the monosomy 21 mosaicism is the cause of the survival of children with more than 4 months of age.  相似文献   

12.
Four cloned unique sequences from the human Y chromosome, two of which are found only on the Y chromosome and two of which are on both the X and Y chromosomes, were hybridized to restriction enzyme-treated DNA samples of a male and a female chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and pig-tailed macaque (Macaca nemestrina); and a male orangutan (Pongo pygmaeus) and gibbon (Hylobates lar). One of the human Y-specific probes hybridized only to male DNA among the humans and great apes, and thus its Y linkage and sequence similarities are conserved. The other human Y-specific clone hybridized to male and female DNA from the humans, great apes, and gibbon, indicating its presence on the X chromosome or autosomes. Two human sequences present on both the X and Y chromosomes also demonstrated conservation as indicated by hybridization to genomic DNAs of distantly related species and by partial conservation of restriction enzyme sites. Although conservation of Y linkage can only be demonstrated for one of these four sequences, these results suggest that Y-chromosomal unique sequence genes do not diverge markedly more rapidly than unique sequences located on other chromosomes. However, this sequence conservation may in part be due to evolution while part of other chromosomes.  相似文献   

13.
Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.  相似文献   

14.
Homeobox genes encode important developmental control proteins. The Drosophila fruit fly HOM complex genes are clustered in region 84-89 of chromosome 3. Probably due to large-scale genome duplication events, their human HOX orthologs belong to four paralogous regions. A series of 13 other homeobox genes are also clustered in region 88-94, on the same chromosome of Drosophila. We suggest that they also duplicated during vertebrate evolution and belong to paralogous regions in humans. These regions are on chromosome arms 4p, 5q, 10q, and 2p or 8p. We coined the term "paralogon" to designate paralogous regions in general. We propose to call these genes "meta Hox" genes. Like Hox genes, metaHox genes are present in one cluster in Drosophila and four clusters (metaHox A-D) in humans on the 4p/5q/10q paralogon.  相似文献   

15.
Reiner et al. (1995b) reported on the existence of a gene with a coding region virtually identical to LIS1, the gene responsible for Miller-Dieker lissencephaly. This gene, LIS2, was mapped to chromosome 2p11.2, and a related pseudogene, LIS2P, was mapped to 2q13-->q14. By sequencing genomic clones that were mapped by means of 2p and 2q-only hybrids, we now demonstrate the existence of two LIS1 processed pseudogenes mapping to 2p11.2 and 2q13 (PAFAH1P1 and PAFAH1P2, respectively). The two sequences appear to lie within larger paralogous regions and share a 98.6% degree of identity. Comparative mapping data by cytogenetic analysis on great apes indicate that the duplication of the genomic region comprising the LIS1 pseudogenes occurred in humans. We also demonstrate that the cDNA sequence shown as part of the LIS2 gene and marking its chromosome 2 specificity belongs to the 3' untranslated region of a different gene (C1orf6) that we mapped to 1q21 by FISH analysis.  相似文献   

16.
Fluorescence in situ hybridization mapping of fully integrated human BAC clones to primate chromosomes, combined with precise breakpoint localization by PCR analysis of flow-sorted chromosomes, was used to analyze the evolutionary rearrangements of the human 3q21.3-syntenic region in orangutan, siamang gibbon, and silvered-leaf monkey. Three independent evolutionary breakpoints were localized within a 230-kb segment contained in BACs RP11-93K22 and RP11-77P16. Approximately 200 kb of the human 3q21.3 sequence was not present on the homologous orangutan, siamang, and Old World monkey chromosomes, suggesting a genomic DNA insertion into the breakpoint region in the lineage leading to humans and African great apes. The breakpoints in the orangutan and siamang genomes were narrowed down to 12- and 20-kb DNA segments, respectively, which are enriched with endogenous retrovirus long terminal repeats and other repetitive elements. The inserted DNA segment represents part of an ancestral duplication. Paralogous sequence blocks were found at human 3q21, approximately 4 Mb proximal to the evolutionary breakpoint cluster region; at human 3p12.3, which contains an independent orangutan-specific breakpoint; and at the subtelomeric and pericentromeric regions of multiple human and orangutan chromosomes. The evolutionary breakpoint regions between human chromosome 3 and orangutan 2 as well their paralogous segments in the human genome coincide with breaks of chromosomal synteny in the mouse, rat, and/or chicken genomes. Collectively our data reveal reuse of the same short recombinogenic DNA segments in primate and vertebrate evolution, supporting a nonrandom breakage model of genome evolution.  相似文献   

17.
Supernumerary marker chromosomes (SMC) are heterogeneous group of chromosomes which are reported in variable phenotypes. Approximately 70% originate from acrocentric chromosomes. Here we report a couple with recurrent miscarriages and a SMC originating from an acrocentric chromosome. The cytogenetic analysis of the husband revealed a karyotype of 47,XY+marker whereas the wife had a normal karyotype. Analysis of SMC with C-banding showed the presence of a big centromere in the center and silver staining showed prominent satellites on both sides of the marker. Apparently, microarray analysis revealed a 2.1 Mb duplication of 15q11.2 region but molecular cytogenetic analysis by fluorescence in situ hybridization (FISH) with whole chromosome paint (WCP) 15 showed that the SMC is not of chromosome 15 origin. Subsequently, FISH with centromere 22 identified the SMC to originate from chromosome 22 which was also confirmed by WCP 22. Additional dual FISH with centromere 22 and Acro-p-arm probes confirmed the centromere 22 and satellites on the SMC. Further fine mapping of the marker with Bacterial Artificial Chromosome (BAC) clones; two on chromosome 22 and four on chromosome 15 determined the marker to possess only centromere 22 sequences and that the duplication 15 exists directly on chromosome 15. In our study, we had identified and characterized a SMC showing inversion duplication 22(p11.1) combined with a direct tandem duplication of 15q11.2. The possible genotype–phenotype in relation with the two rearrangements is discussed.  相似文献   

18.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

19.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome 3(p25q21). The pronuclear chromosomes were analyzed after in vitro penetration of golden hamster eggs. A total of 144 sperm were examined: 69.2% were chromosomally balanced and 30.8% were recombinant. Of the balanced complements, the proportion with a normal chromosome 3 (37.6%) was approximately equal to the proportion with an inverted 3 (31.6%). Of the recombinant complements, the proportion of sperm with a duplication q/deletion p (17.3%) was approximately equal to the reciprocal event of duplication p/deletion q (13.5%). The recombinant chromosome 3 with a duplication q and deletion p has been observed in several abnormal children, but the duplication p/deletion q has never been reported. My results demonstrate that both recombinant chromosomes are produced as expected from an unequal number of crossovers within an inversion loop. In all likelihood the duplication p/deletion q chromosome is an early embryonic lethal because of the amount of genetic material deleted. The proportions of X-bearing (48.9%) and Y-bearing sperm (51.1%) were not significantly different from the expected 1:1 ratio. There was no evidence for an interchromosomal effect. Of the three inversions studied by human sperm chromosome analysis, recombinant chromosomes have been observed only in this case.  相似文献   

20.
Fauth E  Zankl H 《Mutation research》1999,440(2):147-156
Fluorescence in situ hybridisation (FISH) technique with chromosome specific library (CSL) DNA probes for all human chromosomes were used to study about 9000 micronuclei (MN) in normal and idoxuridine (IUdR)-treated lymphocyte cultures of female and male donors. In addition, MN rates and structural chromosome aberrations were scored in Giemsa-stained chromosome spreads of these cultures. IUdR treatment (40 microg/ml) induced on the average a 12-fold increase of the MN rate. Metaphase analysis revealed no distinct increase of chromosome breaks but a preferential decondensation at chromosome 9q12 (28-79%) and to a lower extend at 1q12 (8-21%). Application of FISH technique with CSL probes to one male and one female untreated proband showed that all human chromosomes except chromosome 12 (and to a striking high frequency chromosomes 9, X and Y) occurred in spontaneous MN. In cultures containing IUdR, the chromosomal spectrum found in MN was reduced to 10 chromosomes in the male and 13 in the female proband. Eight chromosomes (2, 6, 12, 13, 14, 15, 17 and 18) did not occur in MN of both probands. On the contrary chromosomes 1 and especially 9 were found much more frequently in the MN of IUdR-treated cultures than in MN of control cultures. DAPI-staining revealed heterochromatin signals in most of the IUdR-induced MN. In an additional study, spontaneous and IUdR-induced MN were investigated in lymphocytes of another female donor using CSL probes only for chromosomes 1, 6, 9, 15, 16 and X. The results confirmed the previous finding that chromosomes 1 and 9 occur very often in MN after IUdR-treatment. The results indicate that decondensation of heterochromatic regions on chromosomes 1 and 9 caused by IUdR treatment strongly correlates with MN formation by these chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号