首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data obtained show that most part of the activity of neutral alpha-glucosidases from human kidney is observed in the particle fraction, and only approximately 15%--in supernatant. Soluble neutral alpha-glucosidases have at least 4 different forms, as it is shown by means of their fractionation on Sephadex G-150, Bio-Gel P-200 and by polyacrylamide gel electrophoresis. Four forms are different in their molecular weight, electrophoretic mobility and substrate specificity. Two of the forms have molecular weight of 310000 and 110000. All the neutral alpha-glucosidases except high molecular weight form (greater than 400000) were retarded on column of Sephadex G-150.  相似文献   

2.
Neutral endopeptidase (EC 3.4.24.11) is an integral membrane protein found at the plasma membrane of many cell types and is especially abundant at the apical "brush border" membrane of the kidney proximal tubules. The enzyme consists of a short amino-terminal cytosolic domain of 27 amino acids, a single hydrophobic sequence which is believed to be responsible for anchoring the enzyme in the plasma membrane, and a large extracellular domain containing the active site. This model is consistent with the proposed function of neutral endopeptidase, which is believed to play an important role in the inactivation of small regulatory peptides at the cell surface. Site-directed mutagenesis has allowed the identification of 1 glutamic acid and 2 histidine residues essential for catalysis. All are located near the COOH terminus of the protein. We do not know, however, whether other segments of the protein are involved in the structure of the active site. The exact role of the cytosolic and transmembrane domains is also unknown. In this report, we have induced the secretion of a soluble form of recombinant neutral endopeptidase in COS-1 cells by fusing in-frame, the cDNA encoding the signal peptide of a secreted protein (pro-opiomelanocortin) to the cDNA sequences of the complete ectodomain of neutral endopeptidase. Characterization of the secreted recombinant protein indicated that it has the same catalytic properties as the membrane-bound recombinant enzyme or as the enzyme extracted from kidney brush border membranes. Thus the extracellular domain alone is sufficient for conferring full catalytic activity to neutral endopeptidase.  相似文献   

3.
Alkaline phosphatase has been solubilized from porcine intestinal mucosa by two different methods: treatment of the mucosa by Emulphogen BC 720 and papain hydrolysis of enterocyte brush border membrane vesicles. Two different enzyme forms have been obtained by these methods.The two enzyme forms (‘detergent form’ and ‘papain form’) have been purified to homogeneity by similar techniques and exhibit closely related molecular characteristics. However, the detergent form displays a hydrophobic behaviour and aggregates in media free of detergent. The two forms can be differentiated by their electrophoretic mobility on polyacrylamide gel in the absence of sodium dodecyl sulphate.By electrophoresis on polyacrylamide gel in the presence of sodium dodecyl sulphate, it has been shown that the detergent and papain forms of alkaline phophatase are dimers consisting of two apparently identical subunits whose molecular weights are 64 000 and 61 000, respectively. The difference between these molecular weights has been attributed to the existence of a hydrophobic region in the detergent form which is present on each subunit.  相似文献   

4.
Evidence for the presence of an insoluble form of adenosine deaminase complexing protein in human kidney has been obtained. An initial study demonstrated that binding of monomeric adenosine deaminase to particulate material from kidney was saturable and could be blocked by preincubating the enzyme with soluble complexing protein. Treatment of particulate material with deoxycholate, followed by immunoassay of the detergent extract, confirmed the presence of an insoluble form of complexing protein in the kidney. Several other human organs examined by this technique contained smaller amounts of insoluble complexing protein. Complexing protein isolated from the soluble and particulate fractions of kidney homogenates were found to be structurally similar. The proteins had the same subunit Mr and showed complete crossreactivity with antiserum to soluble complexing protein. Indirect immunoperoxidase staining of renal cortical tissue revealed that complexing protein was concentrated in the brush border of the proximal tubules. These results indicate that (a) the soluble and insoluble forms of complexing protein from human kidney may be products of the same gene(s) and (b) a portion of the complexing protein in human kidney is bound to the brush border membranes of cells lining the proximal tubules.  相似文献   

5.
This study was conducted to characterize enterocyte apical membrane-bound alkaline phosphatase activity in different segments of the porcine small intestine. Duodenal, jejunal, and distal ileal segments were isolated from three 26-kg pigs and enterocyte brush border membrane, enriched between 19- and 24-fold in sucrase specific activity, was prepared by Mg(2+) precipitation and differential centrifugation. With P-nitrophenyl phosphate as substrate, the optimum pH for porcine brush border membrane-bound alkaline phosphatase activity was defined to be 10.5 for all three segments. At the optimal pH, the kinetics of membrane-bound alkaline phosphatase were determined for the three intestinal segments. The affinity of this enzyme (K(m), mM) in the jejunum (0.64 +/- 0.07) was four times greater than that in the duodenum (2.75 +/- 0.59) and the distal ileum (2.71 +/- 1.14). These results indicate that different isomers of membrane-bound alkaline phosphatase might have been expressed in different segments of porcine small intestine. The maximal specific activity (V(max), micromol/mg protein . min) of this enzyme was highest in the duodenal (7.74 +/- 0.95), intermediate in the jejunal (4.31 +/- 0.18), and lowest in the distal ileal (3.53 +/- 0.84) brush border membrane. Therefore, the maximal specific activity of brush border membrane-bound alkaline phosphatase along the intestinal longitudinal axis in growing pigs decreases from the duodenum toward the distal ileum.  相似文献   

6.
gamma-Glutamyltranspeptidase is associated with the brush border membrane of kidney proximal straight tubule cells. It can be solubilized qualitatively by treatment with papain or Triton X-100. Neither procedure affects its catalytic activity but the two resulting forms of the enzyme differ considerably in their physical properties. The papain-solubilized transpeptidase is soluble in aqueous buffers and was purified 430-fold. It has an s20,w of 4.9 S, a Stokes radius of 36 A, and a calculated molecular weight of 69,000. It appears homogeneous by sedimentation equilibrium centrifugation (Mr=66,700). In contrast, the Triton-solubilized transpeptidase is soluble only in the presence of detergents and was purifed 300-fold. This form of the enzyme has a Stokes radius of 70 A but an s20,w of only 4.15 S. Aggregation of the enzyme just below the critical micelle concentration of Triton X-100 and its ability to bind 1.16 mg of Triton X-100-protein complex was calculated to be 169,000, but the glycoprotein portion of the complex is 52% of the total mass (87,000). The mass of Triton X-100 (82,000) is consistent with its reported micelle molecular weight. Treatment of the Triton-purified transpeptidase with papain or bromelain results in a form of the enzyme identical in all respects with the papain-purified enzyme. Both the Triton- and papain-purified transpeptidase exhibit two protein bands on sodium lauryl sulfate-polyacrylamide gel electrophoresis. The smaller subunits of the two forms appear identical (Mr=27,000), while the larger subunits of the Triton- and papain-purified enzyme have apparent molecular weights of 54,000 and 51,000, respectively. These data suggest that a peptide (3,000 to 19,000) in the larger subunit of gamma-glutamyltranspeptidase is responsible for its binding to Triton micelles and probably for holding the enzyme in the brush border membrane.  相似文献   

7.
The heterogeneity of dipeptidyl peptidase IV (EC 3.4.14.5) was investigated in normal human serum. Thin-layer analytical isoelectric focusing revealed the presence of multiple molecular forms of the enzyme, their isoelectric points being in the pH range of 3.30-4.25. The maximum of enzyme activity appeared around pH 3.50. After treatment with neuraminidase the pI shifted to 4.70-5.40 with two maxima at pH 5.00 and 5.15. The Triton X-100 solubilized as well as the papain-treated-Triton X-100 solubilized enzyme from the whole human adult jejunal biopsy were also found to be heterogeneous. They focused--both before and after neuraminidase treatment--at pH values different from those of the enzyme of normal human serum. There was almost no pI shift after neuraminidase treatment of the intestinal enzyme from adult enterobiopsy. Electrophoresis in continuous polyacrylamide gradient gels as well as gel chromatography on Bio-Gel A-1.5m revealed two molecular forms of dipeptidyl peptidase IV in normal human serum. The estimated relative molecular mass of the major enzyme form was 250 000 in both the separation techniques used. On the other hand, the apparent relative molecular mass of the minor enzyme form was 450 000 as assessed by gradient gel electrophoresis, and 550 000, when estimated by gel chromatography. The Km values for glycyl-L-proline-4-nitroanilide as substrate with the major and minor forms of the serum enzyme were 1.60 +/- 0.39 X 10(-4) mol/l and 1.60 +/- 0.13 X 10(-4) mol/l, respectively. Our results indicate that the dipeptidyl peptidase IV in normal human serum is a heterogeneous enzyme as far as its charge and molecular size are concerned.  相似文献   

8.
Examination of insulin and glucagon degradation by rat kidney subcellular fractions revealed that most degrading activity was localized to the 100 000 X g pellet and 100 000 X g supernatant fractions. Further characterization of the degrading activities of the 100 000 X g pellet and supernatant suggested that three types of enzymatic activity were present at neutral pH. From the cytosol an enzyme with characteristics of the insulin glucagon protease of skeletal muscle was purified. This enzyme appeared to be responsible for insulin degradation by the kidney at physiological insulin concentrations. This enzyme also contributed to glucagon degradation but was not the most active mechanism for this. In the 100 000 X g pellet at least two separate enzymatic activities were present. One of these had properties consistent with those described for glutathione insulin transhydrogenase and appeared to be responsible for insulin degradation at high insulin concentration. The other enzyme was associated with the brush border and had properties consistent with the brush border neutral protease. This enzyme appeared responsible for glucagon degradation at both low and high substrate concentrations. An apparent marked synergism between the 100 000 X g pellet and the 100 000 X g supernatant was noted for insulin degradation at physiological insulin concentrations. Pellet glucagon-degrading activity and soluble insulin-degrading activity were necessary for this. The mechanism was found to be limited insulin degradation by the soluble enzyme resulting in both trichloroacetic acid-precipitable trichloroacetic acid-soluble fragments followed by further degradtion of the fragments by the glucagon-degrading enzyme resulting in an additional increase in trichloroacetic acid-soluble products.  相似文献   

9.
The sialoglycoprotein subunits of human placental brush border membranes were labeled by sequential treatment with periodate and (3H)-sodium borohydride, which trititates sialic acid, and by lactoperoxidase-catalyzed (125I) iodination of tyrosine residues. The labeled subunits were characterized with respect to their affinity for antisera raised against Triton X-100 extracts of placental brush border membranes. The immunochemically reactive components were analyzed by two-dimensional electrophoresis according to a modification of the O'Farrell technique [20] enabling the assignment of estimated Mr? and pI. Of the 33 3H-labeled brush border subunits present in Triton X-100-solubilized membrane preparations, 18 subunits reacted with antiplacental brush border antisera insolubilized on CNBr-activated Sepharose or in immunoprecipitates. Fourteen of these tritiated subunits were also labeled with 125I, confirming that these are glycoproteins. The plasma membranes of normal human liver and microsomes from kidney were examined for the placental brush border glycoprotein subunits by reaction with insolubilized antiplacental brush border antisera and two-dimensional electrophoresis of the reacting tritium-labeled subunits. Comparison of the two-dimensional electrophoretic maps of the immunochemically reacting glycoproteins from liver, kidney, and placenta resulted in the identification of seven placental subunits in common with liver and kidney on the basis of antigenic cross-reactivity, Mr?, and pI. Four placental glycoproteins were not found in the other tissues and are potentially specific to the placenta. Three of the placental subunits were only seen in placenta and kidney. Three of the subunits ran at the dye front and could not be assigned molecular weights. One of the subunits was poorly labeled by tritiation of sialic acid and was not considered.  相似文献   

10.
B Droba  M Droba 《Folia biologica》1992,40(1-2):67-71
Two forms (I and II) of beta-N-acetyl-D-glucosaminidase from cock seminal plasma and one form (III) from spermatozoa were separated by chromatofocusing. The active enzyme forms I and II had pI values of 6.6 and 6.3, respectively, while form III had two subforms with pI values of 6.3 and 6.1, as determined by polyacrylamide gel electrofocusing. The molecular weights were 76,000 for forms I and III and 32,000 for form II. The optimum pH of enzyme forms I and III ranged from 3.6 to 4.0. In contrast, form II showed one distinct maximum at pH 3.7. The Km values obtained with p-nitrophenyl-beta-N-acetyl-D-glucosaminide as substrate were 0.35, 0.28, and 0.39 mM for forms I, II, and III, respectively. It is assumed that both cock spermatozoa and cock seminal plasma contain a common, enzymatically active beta-N-acetyl-D-glucosaminidase subunit with M(r) about 32,000 and pI 6.3.  相似文献   

11.
Previously it was found that the proteolytic processing of precursors of gamma-glutamyltranspeptidase takes place on the brush border membrane of the kidney. The activity of the processing protease in purified brush border membranes was examined using endogenous substrates labeled with [3H]fucose and [35S]methionine. On incubation with brush border membranes in vitro, the precursors were converted stoichiometrically to two subunits, and the reaction followed first order kinetics with a rate constant k of -0.048 min-1. The enzyme responsible for this conversion was membrane-bound, had a weakly basic optimum pH and was inhibited by serine protease inhibitors. These results suggest that the precursor of gamma-glutamyltranspeptidase is processed to the mature form by a serine protease bound to the brush border membrane of kidney.  相似文献   

12.
Basal and trypsin-stimulated adenosine triphosphatase activities of Escherichia coli K 12 have been characterized at pH 7.5 in the membrane-bound state and in a soluble form of the enzyme. The saturation curve for Mg2+/ATP = 1/2 was hyperbolic with the membrane-bound enzyme and sigmoidal with the soluble enzyme. Trypsin did not modify the shape of the curves. The kinetic parameters were for the membrane-bound ATPase: apparent Km = 2.5 mM, Vmax (minus trypsin) = 1.6 mumol-min-1-mg protein-1, Vmax (plus trypsin) = 2.44 mumol-min-1-mg protein-1; for the soluble ATPase: [S0.5] = 1.2 mM, Vmax (-trypsin) = 4 mumol-min-1-mg protein-1; Vmax (+ trypsin) = 6.6 mumol-min-1-mg protein-1. Hill plot analysis showed a single slope for the membrane-bound ATPase (n = 0.92) but two slopes were obtained for the soluble enzyme (n = 0.98 and 1.87). It may suggest the existence of an initial positive cooperativity at low substrate concentrations followed by a lack of cooperativity at high ATP concentrations. Excess of free ATP and Mg2+ inhibited the ATPase but excess of Mg/ATP (1/2) did not. Saturation for ATP at constant Mg2+ concentration (4 mM) showed two sites (groups) with different Kms: at low ATP the values were 0.38 and 1.4 mM for the membrane-bound and soluble enzyme; at high ATP concentrations they were 17 and 20 mM, respectively. Mg2+ saturation at constant ATP (8 mM) revealed michealian kinetics for the membrane-bound ATPase and sigmoid one for the protein in soluble state. When the ATPase was assayed in presence of trypsin we obtained higher Km values for Mg2+. These results might suggest that trypsin stimulates E. coli ATPase by acting on some site(s) involved in Mg2+ binding. Adenosine diphosphate and inorganic phosphate (Pi) act as competitive inhibitors of Escherichia coli ATPase. The Ki values for Pi were 1.6 +/- 0.1 mM for the membrane-bound ATPase and 1.3 +/- 0.1 mM for the enzyme in soluble form, the Ki values for ADP being 1.7 mM and 0.75 mM for the membrane-bound and soluble ATPase, respectively. Hill plots of the activity of the soluble enzyme in presence of ADP showed that ADP decreased the interaction coefficient at ATP concentrations below its Km value. Trypsin did not modify the mechanism of inhibition or the inhibition constants. Dicyclohexylcarbodiimide (0.4 mM) inhibited the membrane-bound enzyme by 60-70% but concentrations 100 times higher did not affect the residual activity nor the soluble ATPase. This inhibition was independent of trypsin. Sodium azide (20 muM) inhibited both states of E. coli ATPase by 50%. Concentrations 25-fold higher were required for complete inhibition. Ouabain, atebrin and oligomycin did not affect the bacterial ATPase.  相似文献   

13.
Dopamine beta-hydroxylase exists as three forms in human neuroblastoma (SH-SY5Y) cells. The membrane-bound form of the hydroxylase contains three different species with apparent relative molecular weights of 73,000, 77,000, and 82,000. The intracellular soluble form of dopamine beta-hydroxylase was present as a single species with an apparent molecular weight of 73,000. Pulse-chase experiments showed that membranous dopamine beta-hydroxylase contains two subunit forms of 73,000 and 77,000 after short chase times. The soluble hydroxylase was synthesized as a single species of 73,000 at approximately the same rate as the lower molecular weight species of the membranous enzyme. A constitutively secreted third form of the enzyme with an intermediate apparent molecular weight also incorporated [35S]sulfate, whereas no significant amount of [35S]sulfate was observed in the cellular forms of the enzyme. The [35S]sulfate was incorporated on N-linked oligosaccharides. Approximately 12% of the enzyme is released constitutively within 1 h. These results demonstrate that neuronal cells have the ability to constitutively secrete a specific form of dopamine beta-hydroxylase which may contribute to the levels of this enzyme found in plasma.  相似文献   

14.
We purified angiotensin I-converting enzyme (ACE) from pig and human lung and plasma for comparison of some physicochemical properties between the endothelial membrane-bound form and the soluble form of the enzyme. After affinity chromatography on Sepharose CL-4B/lisinopril, gel-filtration HPLC on Superose 12 achieved homogeneity for both forms as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Whatever the source of ACE, the molecular weight was 300 +/- 40 kDa after calibration of Superose 12 with standard globular proteins and 172 +/- 4 kDa by SDS-PAGE, with or without reduction, a result suggesting interactions between the glycopolypeptide chain and the chromatographic gel possibly related to the overall shape and sugar content of the enzyme. Ion-exchange HPLC analysis on TSK-DEAE showed that the membrane-bound and soluble forms of ACE are not isoenzymes, although isoelectrofocusing did show that the isoelectric point of soluble ACE was lower than those of tissue ACE, suggesting a different glycosylation. No significant difference between porcine and human ACE appeared. HPLC methods seem to be of particular interest for the purification of ACE with a high yield and for the analysis of its putative differently glycosylated isoforms.  相似文献   

15.
The regional, cellular and subcellular distribution patterns of aminopeptidase N and dipeptidyl aminopeptidase IV were examined in rat small intestine. Aminopeptidase N of brush border membrane had maximal activity in the upper and middle intestine, while dipeptidyl aminopeptidase IV had a more uniform distribution profile with relatively high activity in the ileum. Along the villus and crypt cell gradient, the activity of both enzymes was maximally expressed in the mid-villus cells. However there was substantial dipeptidyl aminopeptidase IV activity in the crypt cells. Both enzymes were primarily associated with brush border membranes in all segments, however, in the proximal intestine, a significant amount of dipeptidyl aminopeptidase IV activity was associated with the cytosol fraction. The cytosol and brush border membrane forms of dipeptidyl aminopeptidase IV were immunologically identical and had the same electrophoretic mobility on disc gels. In contrast, the soluble and brush border membrane-bound forms of aminopeptidase N were immunologically distinct. When the total amount of aminopeptidase N and dipeptidyl aminopeptidase IV was determined by competitive radioimmunoassay, there were no regional or cellular differences in specific activity (enzyme activity/mg of enzyme protein) of either enzyme in brush border membrane and homogenate. The specific activity of both enzymes in a purified Golgi membrane fraction as measured by radioimmunoassay was about half that of the brush border membrane fraction. These results suggest that (1) aminopeptidase N and dipeptidyl aminopeptidase IV have different regional, cellular and subcellular distribution patterns; (2) there are enzymatically inactive forms of both enzymes present in a constant proportion to active molecules and that (3) a two-fold activation of precursor enzyme forms occurs during transfer from the Golgi membranes to the brush border membranes.  相似文献   

16.
Membrane-bound inositolpolyphosphate 5-phosphatase was solubilized and highly purified from a microsomal fraction of rat liver. Its physiochemical and enzymological properties were compared with those of highly purified preparations of two types of soluble enzyme (soluble Type I and Type II) from rat brain. The molecular masses of the membrane-bound and soluble Type I enzymes were 32 kDa, while that of soluble Type II enzyme was 69 kDa, as determined by molecular sieve chromatography. The membrane-bound and soluble Type I enzymes showed similar broad peaks on isoelectric focusing (pI 5.8-6.4), while soluble Type II enzyme showed multiple peaks in the region between pI 4.0-5.8. All three enzymes required divalent cation for activity. Mg2+ was the most effective for both the membrane-bound and soluble Type I enzymes, while Co2+ enhanced soluble Type II enzyme activity about 1.5-fold relative to Mg2+ at 1 mM. The optimal pH of both the membrane-bound and soluble Type I enzymes was 7.8, while that of soluble Type II was 6.8. The Km values for inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] of all three enzymes were similar (5-8 microM), but those for inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] were quite different, the Km values of membrane-bound and soluble Type I enzymes being 0.8 microM, while that of soluble Type II was 130 microM. These similarities between the membrane-bound and soluble Type I enzymes suggest that these two molecules may be the same protein, and that concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, both of which are considered to play critical roles in the regulation of intracellular Ca2+-concentration, may be differently regulated by two functionally distinct enzymes.  相似文献   

17.
Enkephalin degradation in brain has been shown to be catalyzed, in part, by a membrane-bound puromycin-sensitive aminopeptidase. A cytosolic puromycin-sensitive aminopeptidase with similar properties also has been described. The relationship between the soluble and membrane forms of the rat brain enzyme is investigated here. Both of these aminopeptidase forms were purified from rat brain and an antiserum was generated to the soluble enzyme. Each of the aminopeptidases is composed of a single polypeptide of molecular mass 100 kilodaltons as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and size-exclusion chromatography. The antisoluble aminopeptidase antiserum reacts with both enzyme forms on immunoblots and inhibits both with nearly identical inhibition curves. The isoelectric points (pI = 5.0) of both forms were shown to be identical. N-terminal sequencing yielded a common sequence (P-E-K-R-P-F-E-R-L-P-T-E-V-S-P-I-N-Y) for both enzyme forms, and peptide mapping yielded 26 peptides that also appeared identical between the two enzyme forms. Studies on the nature of the association of the membrane enzyme form with the cell membrane suggest that this enzyme form does not represent the soluble form trapped during the enzyme preparation. It is suggested that the membrane form of the puromycin-sensitive aminopeptidase is identical to the soluble enzyme and that it associates with the membrane by interactions with other integral membrane proteins.  相似文献   

18.
Endothelin-1 is involved in physiology and pathophysiology of the alimentary tract. The peptide modulates blood flow in the gastrointestinal microvasculature and regulates contractility of smooth muscles and, when present in excess, may be an important factor contributing to pathogenesis of various forms of mucosal injury and peristaltic disorders. Mechanisms that regulate endothelin concentration in the gastrointestinal tissues are unknown. Therefore, the aim of our study was to identify and characterize endothelin inactivating peptidases in the rat gastrointestinal mucosa and smooth muscle cells. We have found three high affinity and efficient endothelin-1 inactivating peptidases. The acidic (pH optimum 5.5), membrane-bound, thiorphan- (ED(50) 1.2+/-0.2 nM) and phosphoramidon (ED(50) 150+/-25 pM) sensitive, endothelin-1 inactivating peptidase (K(M) 0.12+/-0.03 microM) was present in the mucosal cells of duodenum and small intestine. The enzyme exhibited high molecular weight (>100 kDa) and characteristics similar to that of the rat and human kidney, acidic metalloendopeptidase that was recently described. Two forms of the unique, low molecular weight (100>MW>30 kDa), alkaline (pH optimum 8.5), specific (K(M) 0.5+/-0.2 microM), thiorphan- and phosphoramidon insensitive, 1,10 phenanthroline inhibitable (ED(50) 0.65+/-0.20 mM, mean+/-S.E.M.) endothelin-1 inactivating peptidase were present exclusively in the duodenal mucosal cells; soluble form in cytosol and membrane-bound form exhibiting an abundance ratio 5:1, respectively. Mucosa of the stomach and large intestine, and gastrointestinal smooth muscle cells do not contain the specific endothelin-1 inactivating peptidases. The enzymes may play a crucial role in regulation of endothelin concentration in the gastrointestinal tissues. Whether impairment of activity of the mucosal endothelin inactivating peptidases, resulting in the increase of concentration of endothelin peptides in gastrointestinal tissues, occurs in various pathological conditions is actually studied in our laboratory.  相似文献   

19.
The NAD-reducing hydrogenase of Nocardia opaca 1 b was found to be a soluble, cytoplasmic enzyme. N. opaca 1 b does not contain an additional membrane-bound hydrogenase. The soluble enzyme was purified to homogeneity with a yield of 19% and a final specific activity of 45 mumol H2 oxidized min-1 mg protein-1. NAD reduction with H2 was completely dependent on the presence of divalent metal ions (Ni2+, Co2+, Mg2+, Mn2+) or of high salt concentrations (0.5-1.5 M). The most specific effect was caused by NiCl2, whose optimal concentration turned out to be 1 mM. The stimulation of activity by salts was the greater the less chaotrophic the anion. Maximal activity was achieved in 0.5 M potassium phosphate. Hydrogenase was also activated by protons. The pH optimum in 50 mM triethanolamine/HCl buffer containing 1 mM NiCl2 was 7.8-8.0. In the absence of Ni2+, hydrogenase was only active at pH values below 7.0. The reduction of other electron acceptors was not dependent on metal ions or salts, even though an approximately 1.5-fold stimulation of the reactions by 0.1-10 microM NiCl2 was observed. With the most effective electron acceptor, benzyl viologen, a 50-fold higher specific activity was determined than with NAD. The total molecular weight of hydrogenase has been estimated to be 200 000 (gel filtration) and 178 000 (sucrose density gradient centrifugation, and sodium dodecyl sulfate electrophoresis) respectively. The enzyme is a tetramer consisting of non-identical subunits with molecular weights of 64 000, 56 000, 31 000 and 27 000. It was demonstrated by electrophoretic analyses that in the absence of NiCl2 and at alkaline pH values the native hydrogenase dissociates into two subunit dimers. The first dimer was dark yellow coloured, completely inactive and composed of subunits with molecular weights of 64 000 and 31 000. The second dimer was light yellow, inactive with NAD but still active with methyl viologen. It was composed of subunits with molecular weights of 56 000 and 27 000. Immunological comparison of the hydrogenase of N. opaca 1 b and the soluble hydrogenase of Alcaligenes eutrophus H16 revealed that these two NAD-linked hydrogenases are partially identical proteins.  相似文献   

20.
The soluble form of human brain catechol-O-methyltransferase (EC 2.1.1.6, COMT) has been purified approximately 4,000-fold from a 250,000 X g supernatant solution. The purified enzyme exhibits a molecular weight near 27,500 and a pI value equal to approximately pH 5.0. Initial velocity and product inhibition studies are consistent with an ordered reaction mechanism for soluble COMT. Tropolone, a dead-end inhibitor, exhibited a competitive pattern of inhibition when dopamine (DA) was the varied substrate and an uncompetitive pattern when S-adenosyl-L-methionine (SAM) was the varied substrate. These observations strongly suggest that the soluble form of COMT from human brain catalyzes the O-methylation of catecholamines via an ordered reaction mechanism in which SAM is the leading substrate. Since the membrane-bound form of COMT catalyzes the O-methylation of catecholamines through an identical reaction mechanism, these data provide further evidence that two forms of COMT, while being localized in distinct subcellular compartments, are quite similar in their molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号