首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.  相似文献   

2.
The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.  相似文献   

3.
The pathogenic bacterium Helicobacter pylori utilizes two essential glutamyl-tRNA synthetases (GluRS1 and GluRS2). These two enzymes are closely related in evolution and yet they aminoacylate contrasting tRNAs. GluRS1 is a canonical discriminating GluRS (D-GluRS) that biosynthesizes Glu-tRNA(Glu) and cannot make Glu-tRNA(Gln). In contrast, GluRS2 is non-canonical as it is only essential for the production of misacylated Glu-tRNA(Gln). The co-existence and evident divergence of these two enzymes was capitalized upon to directly examine how GluRS2 acquired tRNA(Gln) specificity. One key feature that distinguishes tRNA(Glu) from tRNA(Gln) is the third position in the anticodon of each tRNA (C36 versus G36, respectively). By comparing sequence alignments of different GluRSs, including GluRS1s and GluRS2s, to the crystal structure of the Thermus thermophilus D-GluRS:tRNA(Glu) complex, a divergent pattern of conservation in enzymes that aminoacylate tRNA(Glu)versus those specific for tRNA(Gln) emerged and was experimentally validated. In particular, when an arginine conserved in discriminating GluRSs and GluRS1s was inserted into Hp GluRS2 (Glu334Arg GluRS2), the catalytic efficiency of the mutant enzyme (k(cat)/K(Mapp)) was reduced by approximately one order of magnitude towards tRNA(Gln). However, this mutation did not introduce activity towards tRNA(Glu). In contrast, disruption of a glycine that is conserved in all GluRS2s but not in other GluRSs (Gly417Thr GluRS2) generated a mutant GluRS2 with weak activity towards tRNA(Glu1). Synergy between these two mutations was observed in the double mutant (Glu334Arg/Gly417Thr GluRS2), which specifically and more robustly aminoacylates tRNA(Glu1) instead of tRNA(Gln). As GluRS1 and GluRS2 are related by an apparent gene duplication event, these results demonstrate that we can experimentally map critical evolutionary events in the emergence of new tRNA specificities.  相似文献   

4.
It is known that Bacillus subtilis glutamyl-tRNA synthetase (GluRS) mischarges E. coli tRNA1 Gln with glutamate in vitro. It has also been established that the expression of B. subtilis GluRS in Escherichia coli results in the death of the host cell. To ascertain whether E. coli growth inhibition caused by B. subtilis GluRS synthesis is a consequence of Glu-tRNA1 Ghn formation, we constructed an in vivo test system, in which B. subtilis GluRS gene expression is controlled by IPTG. Such a system permits the investigation of factors affecting E. coli growth. Expression of E. coli glutaminyl-tRNA synthetase (GlnRS) also ameliorated growth inhibition, presumably by competitively preventing tRNA1 Gln misacylation. However, when amounts of up to 10 mM L-glutamine, the cognate amino acid for acylation of tRNA1 Gln, were added to the growth medium, cell growth was unaffected. Overexpression of the B. subtilis gatCAB gene encoding Glu-tRNAGln amidotransferase (Glu-AdT) rescued cells from toxic effects caused by the formation of the mischarging GluRS. This result indicates that B. subtilis Glu-AdT recognizes the mischarged E. coli GlutRNA1 Gln, and converts it to the cognate Gln-tRNA1 Gln species. B. subtilis GluRS-dependent Glu-tRNA1 Gln formation may cause growth inhibition in the transformed E. coli strain, possibly due to abnormal protein synthesis.  相似文献   

5.
Error-free protein biosynthesis is dependent on the reliable charging of each tRNA with its cognate amino acid. Many bacteria, however, lack a glutaminyl-tRNA synthetase. In these organisms, tRNA(Gln) is initially mischarged with glutamate by a non-discriminating glutamyl-tRNA synthetase (ND-GluRS). This enzyme thus charges both tRNA(Glu) and tRNA(Gln) with glutamate. Discriminating GluRS (D-GluRS), found in some bacteria and all eukaryotes, exclusively generates Glu-tRNA(Glu). Here we present the first crystal structure of a non-discriminating GluRS from Thermosynechococcus elongatus (ND-GluRS(Tel)) in complex with glutamate at a resolution of 2.45 A. Structurally, the enzyme shares the overall architecture of the discriminating GluRS from Thermus thermophilus (D-GluRS(Tth)). We confirm experimentally that GluRS(Tel) is non-discriminating and present kinetic parameters for synthesis of Glu-tRNA(Glu) and of Glu-tRNA(Gln). Anticodons of tRNA(Glu) (34C/UUC36) and tRNA(Gln) (34C/UUG36) differ only in base 36. The pyrimidine base of C36 is specifically recognized in D-GluRS(Tth) by the residue Arg358. In ND-GluRS(Tel) this arginine residue is replaced by glycine (Gly366) presumably allowing both cytosine and the bulkier purine base G36 of tRNA(Gln) to be tolerated. Most other ND-GluRS share this structural feature, leading to relaxed substrate specificity.  相似文献   

6.
From one amino acid to another: tRNA-dependent amino acid biosynthesis   总被引:2,自引:0,他引:2  
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.  相似文献   

7.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

8.
Gln-tRNA(Gln) is synthesized from Glu-tRNA(Gln) in most microorganisms by a tRNA-dependent amidotransferase in a reaction requiring ATP and an amide donor such as glutamine. GatDE is a heterodimeric amidotransferase that is ubiquitous in Archaea. GatD resembles bacterial asparaginases and is expected to function in amide donor hydrolysis. We show here that Methanothermobacter thermautotrophicus GatD acts as a glutaminase but only in the presence of both Glu-tRNA(Gln) and the other subunit, GatE. The fact that only Glu-tRNA(Gln) but not tRNA(Gln) could activate the glutaminase activity of GatD suggests that glutamine hydrolysis is coupled tightly to transamidation. M. thermautotrophicus GatDE enzymes that were mutated in GatD at each of the four critical asparaginase-active site residues lost the ability to hydrolyze glutamine and were unable to convert Glu-tRNA(Gln) to Gln-tRNA(Gln) when glutamine was the amide donor. However, ammonium chloride rescued the activities of these mutants, suggesting that the integrity of the ATPase and the transferase activities in the mutant GatDE enzymes was maintained. In addition, pyroglutamyl-tRNA(Gln) accumulated during the reaction catalyzed by the glutaminase-deficient mutants or by GatE alone. The pyroglutamyl-tRNA is most likely a cyclized by-product derived from gamma-phosphoryl-Glu-tRNA(Gln), the proposed high energy intermediate in Glu-tRNA(Gln) transamidation. That GatE alone could form the intermediate indicates that GatE is a Glu-tRNA(Gln) kinase. The activation of Glu-tRNA(Gln) via gamma-phosphorylation bears a similarity to the mechanism used by glutamine synthetase, which may point to an ancient link between glutamine synthesized for metabolism and translation.  相似文献   

9.
Núñez H  Lefimil C  Min B  Söll D  Orellana O 《FEBS letters》2004,557(1-3):133-135
Two types of glutamyl-tRNA synthetase exist: the discriminating enzyme (D-GluRS) forms only Glu-tRNA(Glu), while the non-discriminating one (ND-GluRS) also synthesizes Glu-tRNA(Gln), a required intermediate in protein synthesis in many organisms (but not in Escherichia coli). Testing the capacity to complement a thermosensitive E. coli gltX mutant and to suppress an E. coli trpA49 missense mutant we examined the properties of heterologous gltX genes. We demonstrate that while Acidithiobacillus ferrooxidans GluRS1 and Bacillus subtilis Q373R GluRS form Glu-tRNA(Glu), A. ferrooxidans and Helicobacter pylori GluRS2 form Glu-tRNA(Gln) in E. coli in vivo.  相似文献   

10.
The formation of glutaminyl-tRNA (Gln-tRNA) in Bacilli, chloroplasts, and mitochondria occurs in a two-step reaction. This involves misacylation of tRNA(Gln) with glutamate by glutamyl-tRNA synthetase and subsequent amidation of Glu-tRNA(Gln) to the correctly acylated Gln-tRNA(Gln) by a specific amidotransferase (Sch?n, A., Kannangara, C. G., Gough, S., and S?ll, D. (1988) Nature 331, 187-190). Here we demonstrate the existence of this pathway in green algae and describe the purification of the Glu-tRNA(Gln) amidotransferase from Chlamydomonas reinhardtii. The purified enzyme showed an Mr of approximately 120,000 when analyzed by glycerol gradient sedimentation and gel filtration. An apparent Mr of 63,000 of the denatured protein was demonstrated by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. This indicates that the enzyme possesses an alpha 2 structure. The substrate for the purified enzyme is Glu-tRNA(Gln) but not Glu-tRNA(Glu). The enzyme requires ATP, Mg2+, and an amide donor for the conversion. Acceptable amide donors are glutamine, asparagine, and ammonia. Blocking of the glutamine-dependent reaction by alkylation of the protein with 6-diazo-5-oxonorleucine did not inhibit the ammonia-dependent reaction, suggesting that the enzyme has separate glutamine and ammonia binding sites. As suggested by Wilcox (Wilcox, M. (1969) Eur. J. Biochem. 11, 405-412) the amidation reaction may involve glutamyl-phosphate formation, since ATP is cleaved to ADP when the enzyme is incubated with Glu-tRNA(Gln) and ATP. In common with other glutamine amidotransferases, the enzyme also possesses low glutaminase activity. The purified Glu-tRNA(Gln) amidotransferase forms a stable complex with Glu-tRNA(Gln) in the presence of ATP and Mg2+ but in the absence of the amide donor as determined by gradient centrifugation.  相似文献   

11.
Genomic studies revealed the absence of glutaminyl-tRNA synthetase and/or asparaginyl-tRNA synthetase in many bacteria and all known archaea. In these microorganisms, glutaminyl-tRNA(Gln) (Gln-tRNA(Gln)) and/or asparaginyl-tRNA(Asn) (Asn-tRNA(Asn)) are synthesized via an indirect pathway involving side chain amidation of misacylated glutamyl-tRNA(Gln) (Glu-tRNA(Gln)) and/or aspartyl-tRNA(Asn) (Asp-tRNA(Asn)) by an amidotransferase. A series of chloramphenicol analogs have been synthesized and evaluated as inhibitors of Helicobacter pylori GatCAB amidotransferase. Compound 7a was identified as the most active competitive inhibitor of the transamidase activity with respect to Asp-tRNA(Asn) (K(m)=2μM), with a K(i) value of 27μM.  相似文献   

12.
Glu-tRNA is either bound to elongation factor Tu to enter protein synthesis or is reduced by glutamyl-tRNA reductase (GluTR) in the first step of tetrapyrrole biosynthesis in most bacteria, archaea and in chloroplasts. Acidithiobacillus ferrooxidans, a bacterium that synthesizes a vast amount of heme, contains three genes encoding tRNA(Glu). All tRNA(Glu) species are substrates in vitro of GluRS1 from A. ferrooxidans.Glu-tRNA(3)(Glu), that fulfills the requirements for protein synthesis, is not substrate of GluTR. Therefore, aminoacylation of tRNA(3)(Glu) might contribute to ensure protein synthesis upon high heme demand by an uncoupling of protein and heme biosynthesis.  相似文献   

13.
Organisms lacking Gln-tRNA synthetase produce Gln-tRNA(Gln) from misacylated Glu-tRNA(Gln) through the transamidation activity of Glu-tRNA(Gln) amidotransferase (Glu-AdT). Glu-AdT hydrolyzes Gln to Glu and NH(3), using the latter product to transamidate Glu-tRNA(Gln) in concert with ATP hydrolysis. In the absence of the amido acceptor, Glu-tRNA(Gln), the enzyme has basal glutaminase activity that is unaffected by ATP. However, Glu-tRNA(Gln) activates the glutaminase activity of the enzyme about 10-fold; addition of ATP elicits a further 7-fold increase. These enhanced activities mainly result from increases in k(cat) without significant effects on the K(m) for Gln. To determine if ATP binding is sufficient to induce full activation, we tested a variety of ATP analogues for their ability to stimulate tRNA-dependent glutaminase activity. Despite their binding to Glu-AdT, none of the ATP analogues induced glutaminase activation except ATP-gammaS, which stimulates glutaminase activity to the same level as ATP, but without formation of Gln-tRNA(Gln). ATP-gammaS hydrolysis by Glu-AdT is very low in the absence or presence of Glu-tRNA(Gln) and Gln. In contrast, Glu-tRNA(Gln) stimulates basal ATP hydrolysis slightly, but full activation of ATP hydrolysis requires both Gln and Glu-tRNA(Gln). Simultaneous monitoring of ATP or ATP-gammaS hydrolysis and glutaminase and transamidase activities reveals tight coupling among these activities in the presence of ATP, with all three activities waning in concert when Glu-tRNA(Gln) levels become exhausted. ATP-gammaS stimulates the glutaminase activity to an extent similar to that with ATP, but without concomitant transamidase activity and with a very low level of ATP-gammaS hydrolysis. This uncoupling between ATP-gammaS hydrolysis and glutaminase activities suggests that the activation of glutaminase activity by ATP or ATP-gammaS, together with Glu-tRNA(Gln), results either from an allosteric effect due simply to binding of these analogues to the enzyme or from some structural changes that attend ATP or ATP-gammaS hydrolysis.  相似文献   

14.
Glutaminyl-tRNA synthetase generates Gln-tRNA(Gln) 10(7)-fold more efficiently than Glu-tRNA(Gln) and requires tRNA to synthesize the activated aminoacyl adenylate in the first step of the reaction. To examine the role of tRNA in amino acid activation more closely, several assays employing a tRNA analog in which the 2'-OH group at the 3'-terminal A76 nucleotide is replaced with hydrogen (tRNA(2'HGln)) were developed. These experiments revealed a 10(4)-fold reduction in kcat/Km in the presence of the analog, suggesting a direct catalytic role for tRNA in the activation reaction. The catalytic importance of the A76 2'-OH group in aminoacylation mirrors a similar role for this moiety that has recently been demonstrated during peptidyl transfer on the ribosome. Unexpectedly, tracking of Gln-AMP formation utilizing an alpha-32P-labeled ATP substrate in the presence of tRNA(2'HGln) showed that AMP accumulates 5-fold more rapidly than Gln-AMP. A cold-trapping experiment revealed that the nonenzymatic rate of Gln-AMP hydrolysis is too slow to account for the rapid AMP formation; hence, the hydrolysis of Gln-AMP to form glutamine and AMP must be directly catalyzed by the GlnRS x tRNA(2'HGln) complex. This hydrolysis of glutaminyl adenylate represents a novel reaction that is directly analogous to the pre-transfer editing hydrolysis of noncognate aminoacyl adenylates by editing synthetases such as isoleucyl-tRNA synthetase. Because glutaminyl-tRNA synthetase does not possess a spatially separate editing domain, these data demonstrate that a pre-transfer editing-like reaction can occur within the synthetic site of a class I tRNA synthetase.  相似文献   

15.
Glutaminyl-tRNA synthetase is thought to be absent from organelles. Instead, Gln-tRNA is formed via the transamidation pathway, the other route to this essential compound in protein biosynthesis. However, it was previously shown that glutaminyl-tRNA synthetase activity is present in Leishmania mitochondria. This work identifies genes encoding glutaminyl- and glutamyl-tRNA synthetase in the closely related organism Trypanosoma brucei. Down-regulation of their respective gene products by RNA interference showed that (i) they are essential for the growth of insect stage T. brucei and (ii) they are responsible for essentially all of the glutaminyl- and glutamyl-tRNA synthetase activity detected in both the cytosol and the mitochondria. In vitro aminoacylation experiments with the recombinant T. brucei enzymes and total tRNA confirmed the identity of the two aminoacyl-tRNA synthetases. Interestingly, T. brucei uses the same eukaryotic-type glutaminyl-tRNA synthetase to form mitochondrial and cytosolic Gln-tRNA. The formation of Glu-tRNA in mitochondria and the cytoplasm is catalyzed by a single eukaryotic-type discriminating glutamyl-tRNA synthetase. T. brucei, similar to Leishmania, imports all of its mitochondrial tRNAs from the cytosol. The use of these two eukaryotic-type enzymes in mitochondria may therefore reflect an adaptation to the situation in which the cytosol and mitochondria use the same set of tRNAs.  相似文献   

16.
17.
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.  相似文献   

18.
The absence of Gln-tRNA synthetase in certain bacteria necessitates an alternate pathway for the production of Gln-tRNA(Gln): misacylated Glu-tRNA(Gln) is transamidated by a Gln-dependent amidotransferase (Glu-AdT) via catalysis of Gln hydrolysis, ATP hydrolysis, activation of Glu-tRNA(Gln), and aminolysis of activated tRNA by Gln-derived NH(3). As observed for other Gln-coupled amidotransferases, substrate binding, Gln hydrolysis, and transamidation by Glu-AdT are tightly coordinated [Horiuchi, K. Y., Harpel, M. R., Shen, L., Luo, Y., Rogers, K. C., and Copeland, R. A. (2001) Biochemistry 40, 6450-6457]. However, Glu-AdT does not employ an active-site Cys nucleophile for Gln hydrolysis, as is common in all other glutaminases: some Glu-AdT lack Cys, but all contain a conserved Ser (Ser176 in the A subunit of Streptococcus pyogenes Glu-AdT) within a sequence signature motif of Ser-based amidases. Our current results with S. pyogenes Glu-AdT support this characterization of Glu-AdT as a Ser-based glutaminase. Slow-onset (approximately 50 M(-1) s(-1)), tight-binding (t(1/2) > 2.5 h for complex dissociation), Gln-competitive inhibition of the Glu-tRNA(Gln)/ATP-independent glutaminase activity of Glu-AdT by gamma-Glu boronic acid is consistent with engagement of a Ser nucleophile in the glutaminase active site. Conversion to rapidly reversible, yet still potent (K(i) = 73 nM) and Gln-competitive, inhibition under full transamidation conditions mirrors the coupling between Gln hydrolysis and aminolysis reactions during productive transamidation. Site-directed replacement of Ser176 by Ala abolishes glutaminase and Gln-dependent transamidase activities of Glu-AdT (>300-fold), but retains a wild-type level of NH(3)-dependent transamidation activity. These results demonstrate the essentiality of Ser176 for Gln hydrolysis, provide additional support for coordinated coupling of Gln hydrolysis and transamidase transition states during catalysis, and validate glutaminase-directed inhibition of Glu-AdT as a route for antimicrobial chemotherapy.  相似文献   

19.
Elongation factor Tu (EF-Tu) binds and loads elongating aminoacyl-tRNAs (aa-tRNAs) onto the ribosome for protein biosynthesis. Many bacteria biosynthesize Gln-tRNA (Gln) and Asn-tRNA (Asn) by an indirect, two-step pathway that relies on the misacylated tRNAs Glu-tRNA (Gln) and Asp-tRNA (Asn) as intermediates. Previous thermodynamic and experimental analyses have demonstrated that Thermus thermophilus EF-Tu does not bind Asp-tRNA (Asn) and predicted a similar discriminatory response against Glu-tRNA (Gln) [Asahara, H., and Uhlenbeck, O. (2005) Biochemistry 46, 6194-6200; Roy, H., et al. (2007) Nucleic Acids Res. 35, 3420-3430]. By discriminating against these misacylated tRNAS, EF-Tu plays a direct role in preventing misincorporation of aspartate and glutamate into proteins at asparagine and glutamine codons. Here we report the characterization of two different mesophilic EF-Tu orthologs, one from Escherichia coli, a bacterium that does not utilize either Glu-tRNA (Gln) or Asp-tRNA (Asn), and the second from Helicobacter pylori, an organism in which both misacylated tRNAs are essential. Both EF-Tu orthologs discriminate against these misacylated tRNAs, confirming the prediction that Glu-tRNA (Gln), like Asp-tRNA (Asn), will not form a complex with EF-Tu. These results also demonstrate that the capacity of EF-Tu to discriminate against both of these aminoacyl-tRNAs is conserved even in bacteria like E. coli that do not generate either misacylated tRNA.  相似文献   

20.
Four out of the 22 aminoacyl‐tRNAs (aa‐tRNAs) are systematically or alternatively synthesized by an indirect, two‐step route requiring an initial mischarging of the tRNA followed by tRNA‐dependent conversion of the non‐cognate amino acid. During tRNA‐dependent asparagine formation, tRNAAsn promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa‐tRNA from non‐discriminating aspartyl‐tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 Å resolution reveals a particle formed by two GatCABs, two dimeric ND‐AspRSs and four tRNAsAsn molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl‐tRNAAsn without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer‐ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号