首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism and biliary excretion of a stretched bilirubin analog with a p-xylyl group replacing the central CH2 hinge were investigated in normal rats, Gunn rats deficient in bilirubin conjugation, and TR- rats deficient in bilirubin glucuronide hepatobiliary transport. Unlike bilirubin, the analog was excreted rapidly in bile unchanged in all three rat strains after intravenous administration. In TR- rats biliary excretion of the analog was diminished, but still substantial, demonstrating that the ATP-binding cassette transporter Mrp2 is not required for its hepatic efflux. These effects are attributable to differences in the preferred conformations of bilirubin and the analog.  相似文献   

2.
Benzylpenicillin (PCG; 180 micromol/kg), a classic beta-lactam antibiotic, was intravenously given to Sprague-Dawley (SD) rats and multidrug resistance-associated protein 2 (Mrp2)-deficient Eisai hyperbilirubinemic rats (EHBR). A percentage of the [(3)H]PCG was excreted into the bile of the rats within 60 min (SD rats: 31.7% and EHBR: 4.3%). Remarkably, a transient increase in the bile flow ( approximately 2-fold) and a slight increase in the total biliary bilirubin excretion were observed in SD rats but not in the EHBR after PCG administration. This suggests that the biliary excretion of PCG and its choleretic effect are Mrp2-dependent. Positive correlations were observed between the biliary excretion rate of PCG and bile flow (r(2) = 0.768) and more remarkably between the biliary excretion rate of GSH and bile flow (r(2) = 0.968). No ATP-dependent uptake of [(3)H]PCG was observed in Mrp2-expressing Sf9 membrane vesicles, whereas other forms of Mrp2-substrate transport were stimulated in the presence of PCG. GSH efflux mediated by human MRP2 expressed in Madin-Darby canine kidney II cells was enhanced in the presence of PCG in a concentration-dependent manner. In conclusion, the choleretic effect of PCG is caused by the stimulation of biliary GSH efflux as well as the concentrative biliary excretion of PCG itself, both of which were Mrp2 dependent.  相似文献   

3.
The biliary excretion of the sodium salts of 8-(2-ethanesulfonic acid)-3-ethyl-2,7,9-trimethyl-1,10-dihydro-11H-dipyrrin-1-one (xanthosulfonic acid) and a fluorescent analogue (8-desethyl-N,N'-carbonyl-kryptopyrromethenone-8-sulfonic acid) was compared in Mrp2-deficient (TR(-)) and normal rats. Both organic anions were excreted rapidly in bile in Mrp2-deficient rats, but the biliary excretion of the fluorescent sulfonate was impaired relative to normal controls. The rat clearly has efficient Mrp2-independent mechanisms for biliary efflux of these anions that are not used by bilirubin or its mono- and diglucuronides.  相似文献   

4.
Benzamide riboside (BR) is a novel anticancer agent exhibiting pronounced activity against several human tumor cells, however, little is known about its biotransformation. To analyze for BR and its metabolites, livers of Wistar and mutant TR- rats were perfused with BR in a single pass system. In bile, native BR and its deamination product, benzene carboxylic acid riboside (BR-COOH) was quantified by HPLC. Total excretion of BR and BR-COOH into bile of Wistar rats was low (< 0.2%) whereas cumulative efflux of BR and its metabolite BR-COOH was high, representing 79% and 1.6% of infused BR, respectively. Biliary excretion of BR and BR-COOH in TR- rats, deficient in canalicular multispecific organic anion transporter, a membrane protein identical to MRP2 in tumor cells, was only slightly lower than in Wistar rats, indicating that BR and BR-COOH are non-substrates of MRP2. Experiments using rat hepatocytes incubated with BR did show a linear uptake of BR and a subsequent metabolism to BR-COOH that was largely excreted into the cellular supernatant. Examination of the cytotoxic activity against the human HL60 and K562 leukemia cells in a clonogenic assay demonstrated an IC50 of 619 microM and 1013 microM for BR-COOH compared to the IC50 of 0.21 microM and 0.46 microM for BR, suggesting the inertness of the metabolite. In summary, we found that deamination of BR to BR-COOH is the main metabolic pathway in rat liver. BR-COOH formation should also be considered in human liver during cancer therapy.  相似文献   

5.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [(3)H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(-) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(-/-) knockout mice, and Bcrp1(-/-) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(-/-) mice or in Bcrp1(-/-) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(-) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(-) rats and functional DMP uptake into isolated TR(-) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(-) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(-) rats expelled phalloidin back into blood circulation.  相似文献   

6.
To determine which efflux carriers are involved in hepatic phalloidin elimination, hepatobiliary [3H]-demethylphalloin (DMP) excretion was studied in normal Wistar rats and in Mrp2 deficient TR(−) Wistar rats as well as in normal wild-type FVB mice, Mdr1a,b(−/−) knockout mice, and Bcrp1(−/−) knockout mice by in situ bile duct/gallbladder cannulation. A subtoxic dose of 0.03 mg DMP/kg b.w. was used, which did not induce cholestasis in any tested animal. Excretion of DMP into bile was not altered in Mdr1a,b(−/−) mice or in Bcrp1(−/−) mice compared with wild-type FVB mice. Whereas 17.6% of the applied dose was excreted into bile of normal Wistar rats, hepatobiliary excretion decreased to 7.9% in TR(−) rats within 2 h after intravenous application. This decrease was not due to reduced cellular DMP uptake, as shown by normal expression of Oatp1b2 in livers of TR(−) rats and functional DMP uptake into isolated TR(−) rat hepatocytes. Tissue concentrations of phalloidin were also not altered in any of the transgenic mice. Interestingly, the decrease of biliary DMP excretion in the TR(−) rats was not followed by any increase of phalloidin accumulation in the liver but yielded a compensatory excretion of the toxin into urine, indicating that hepatocytes of TR(−) rats expelled phalloidin back into blood circulation.  相似文献   

7.
Estradiol-17beta-D-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 micromol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 micromol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3-4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.  相似文献   

8.
The capacity for hepatic elimination of some compounds is different in males and females and differential expression of a number of sinusoidal and canalicular transporters exists. However, the specific events underlying the functional differences are not understood. To determine how sex influences sinusoidal and canalicular organic anion transport, bile duct-cannulated livers from mature Sprague-Dawley rats of both sexes were single-pass perfused with saline containing the model organic anions bromosulphophthalein (BSP), carboxyfluorescein (CF), carboxyfluorescein diacetate (CFDA) or 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). Assay of effluent perfusate anion concentration showed that BSP, but not DIDS, extraction was significantly higher in male versus female rats. At 20 min perfusion with 50 microM BSP the mean effluent concentration was 5.6 and 20.1 microM in, respectively, male and female rats. HPLC confirmed that the effluent perfusate concentration of BSP was higher in female as compared with male rats and was not contributed to by its glutathione conjugate. With 25 microM DIDS, the effluent concentration reached 7.3 (male) and 8.2 microM (female), indicating high extraction efficiency. In contrast to BSP and DIDS, CF extraction was very low (<20%) so that differences between male and females could not be assessed. Biliary BSP and CF excretion were, respectively, 3.5- and 4-fold higher in male rats. Neither sinusoidal efflux nor biliary excretion of CF was sex-dependent with a higher cytoplasmic load of CF (during CFDA perfusion). Our results suggest that differences in sinusoidal uptake are responsible for the sex-specific hepatic excretion of some organic anions.  相似文献   

9.
10.
Biliary excretion of bilirubin was studied in Wistar rats at different intervals following two-thirds hepatectomy. Endogenous bilirubin excretion was not significantly modified during liver regeneration. The maximal biliary excretion rate (Tm) of bilirubin, expressed per 100 g of body weight, significantly decreased immediately after hepatectomy with a recovery to presurgery values by 16 days. Values expressed per g of liver were significantly lowered only by 12- and 24h posthepatectomy. In these early periods there was a significant increase in the liver concentration of unconjugated bilirubin and a decrease in bile flow following bile pigment infusion. Maximal excretion of bilirubin in the rat seems to change parallel to the regeneration of liver mass except during the first 24h in which the inhibitory effects exerted by the high load of exogenous bilirubin would cause a decline in its own biliary output with an added cholestatic effect.  相似文献   

11.
Biliary excretion of certain bile acids is mediated by multidrug resistance associated protein 2 (Mrp2) and the bile salt export pump (Bsep). In the present study, the transport properties of several bile acids were characterized in canalicular membrane vesicles (CMVs) isolated from Sprague--Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) whose Mrp2 function is hereditarily defective and in membrane vesicles isolated from Sf9 cells infected with recombinant baculovirus containing cDNAs encoding Mrp2 and Bsep. ATP-dependent uptake of [(3)H]taurochenodeoxycholate sulfate (TCDC-S) (K(m)=8.8 microM) and [(3)H]taurolithocholate sulfate (TLC-S) (K(m)=1.5 microM) was observed in CMVs from SD rats, but not from EHBR. In addition, ATP-dependent uptake of [(3)H]TLC-S (K(m)=3.9 microM) and [(3)H]taurocholate (TC) (K(m)=7.5 microM) was also observed in Mrp2- and Bsep-expressing Sf9 membrane vesicles, respectively. TCDC-S and TLC-S inhibited the ATP-dependent TC uptake into CMVs from SD rats with IC(50) values of 4.6 microM and 1.2 microM, respectively. In contrast, the corresponding values for Sf9 cells expressing Bsep were 59 and 62 microM, respectively, which were similar to those determined in CMVs from EHBR (68 and 33 microM, respectively). By co-expressing Mrp2 with Bsep in Sf9 cells, IC(50) values for membrane vesicles from these cells shifted to values comparable with those in CMVs from SD rats (4.6 and 1.2 microM). Moreover, in membrane vesicles where both Mrp2 and Bsep are co-expressed, preincubation with the sulfated bile acids potentiated their inhibitory effect on Bsep-mediated TC transport. These results can be accounted for by assuming that the sulfated bile acids trans-inhibit the Bsep-mediated transport of TC.  相似文献   

12.
Newton DJ  Wang RW  Evans DC 《Life sciences》2005,77(10):1106-1115
The canalicular multispecific organic anion transporter/multidrug resistance protein 2 (cMOAT/Mrp2) plays a major role in the transport of anionic xenobiotics across the bile canalicular membrane. Transport deficient rats (TR-) and Eisai-hyperbilirubinemic rats (EHBR), defective in Mrp2, are mutants of Wistar and Sprague Dawley (SD) rats, respectively. In this study, Phase I metabolic enzyme activities in liver microsomes prepared from these mutant male and female rats were compared to their corresponding non-mutant rats. The total cytochrome P450 contents and NADPH-cytochrome P450 reductase activity in male and female TR- rats were significantly higher than in Wistar rats. In male TR- rats, ethoxyresorufin O-deethylation (EROD), pentoxyresorufin O-deethylation (PROD), testosterone 2alpha, 7alpha and 16 alpha-hydroxylase activities were higher, but testosterone 6beta-hydroxylase activity and the rate of androstenedione formation were lower than in Wistar rats. Female TR- rats had higher 7alpha-hydroxylase activity, but EROD activity was lower in female Wistar rats. Similar studies conducted in EHBR versus SD rats demonstrated increased total cytochrome P450 content in male and female EHBR rats; NADPH-cytochrome P450 reductase activity was not significantly affected. Decreased PROD activity and the rate of androstenedione formation were observed in male and female EHBR rats. Furthermore, testosterone 6beta-hydroxylase activity was lower in male EHBR rats than in male SD rats while testosterone 7alpha-hydroxylase activity was significantly higher in male and female EHBR rats. Thus, in addition to Mrp2 deficiency, differential expression of CYP isoforms and their potential impact on the metabolism and pharmacokinetics of compounds should be considered when interpreting data from these rat strains.  相似文献   

13.
Biliary excretion of barium was studied in Sprague-Dawley bile-duct-cannulated rats injected intravenously with 1.8 micrograms Ba/rat as 133Ba-labeled barium chloride. Approximately 0.5% of the barium dose was excreted into bile within 2 h. The time-course profile of biliary excretion of the radiotracer closely reflected that of plasma concentrations. Biliary barium levels reached their peak in the first 15-min period after administration and rapidly declined thereafter. The plasma-to-bile barium-concentration ratio was approx 1 at 2 h after injection. There was no tendency of barium to concentrate in liver, and the 133Ba levels in stomach and small intestine largely exceeded hepatic levels. There is evidence indicating that barium is predominantly excreted with feces following parenteral administration in rats and humans. The results of this study suggest that biliary excretion is of little quantitative importance and that physiological routes other than bile contribute to elimination of barium by the digestive tract.  相似文献   

14.
Multidrug resistance protein 2 (Mrp2) is considered the major mammalian membrane transporter of non-bile salt organic anions from liver to bile. Using Mrp2-deficient rats, we show that the protein is not essential for biliary excretion of biliverdin, its IIIalpha and XIIIalpha isomers, mesobiliverdin XIIIalpha or biliverdins bearing bulky lipophilic groups that are not reduced by biliverdin reductase in vivo. Yet, Mrp2 deficiency does retard the biliary excretion of these verdins to different degrees. The data indicate that there are Mrp2-independent mechanisms in the rat for biliary excretion of dicarboxylate organic anions related to biliverdin.  相似文献   

15.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

16.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   

17.
Uegaki S  Takikawa H  Yamanaka M 《Steroids》1999,64(11):790-795
Biliary organic anion excretion is mediated by an ATP-dependent primary active transporter, canalicular multispecific organic anion transporter/multidrug resistance protein 2. On the other hand, a multiplicity of canalicular organic anion transporter/multidrug resistance protein 2 has been suggested. Therefore, to examine the effect of hydrophobicity on the substrate specificity of canalicular multispecific organic anion transporter/multidrug resistance protein 2, we examined the effect of organic anions and bile acid conjugates on biliary excretion of three taurine-conjugated bile acid sulfates with different hydrophobicity, taurolithocholate-3-sulfate, taurochenodeoxycholate3-sulfate, and taurocholate-3-sulfate in rats. Biliary excretions of these bile acid conjugates were delayed in Eisai hyperbilirubinemic rats. Biliary excretion of these bile acid conjugates was inhibited by sulfobromophthalein, whereas biliary excretion and taurocholate-3-sulfate was not inhibited by phenolphthalein glucuronide. Taurolithocholate-3-sulfate and ursodeoxycholate-3-glucuronide decreased biliary excretion of taurochenodeoxycholate-3-sulfate and taurocholate-3-sulfate, but ursodeoxycholate-3,7-disulfate did not affect biliary excretion of taurochenodeoxycholate-3-sulfate and taurocholate-3-sulfate. These findings indicate that very hydrophilic organic anions are not good substrates of canalicular multispecific organic anion transporter/multidrug resistance protein 2.  相似文献   

18.
Biliary secretion of bile acid glucuronides was studied in control rats and in rats with a congenital defect in hepatobiliary transport of organic anions (GY rats). In control animals, hepatobiliary transport of [3H]lithocholic acid 3-O-glucuronide and [3H]cholic acid 3-O-glucuronide was efficient (greater than 95% in 1 h) and comparable to that of [14C]taurocholic acid. Secretion of both glucuronides was impaired in GY rats (24% and 71% at 1 h), whereas that of taurocholate was similar to control values. However, recovery of the glucuronides in bile was nearly complete within 24 h; virtually no radioactivity was found in urine. In control rats, biliary secretion of lithocholic acid 3-O-glucuronide, but not that of cholic acid 3-O-glucuronide or taurocholate, could be delayed by simultaneous infusion of dibromosulphthalein. In mutant rats, dibromosulphthalein infusion was also able to inhibit secretion of cholic acid 3-O-glucuronide. [3H]Hydroxyetianic acid, a C20 short-chain bile acid, was secreted by control rats as a mixture of 20% carboxyl-linked and 80% hydroxyl-linked (3-O-)glucuronide; secretion was very efficient (99% in 1 h). In GY rats, secretion was drastically impaired (16% at 1 h and 74% over a 24-h period). Initially, the mutant secreted more carboxyl- than hydroxyl-linked glucuronide, but the ratio reached that of control animals after 24 h. The rates of formation of both types of hydroxyetianic acid glucuronide by hepatic microsomes from mutant rats were similar or even slightly higher than those of control microsomes. These findings indicate that bile acid 3-O-glucuronides, but probably not carboxyl-linked glucuronides, are secreted into bile by a transport system shared with organic anions such as conjugated bilirubin and dibromosulphthalein, but different from that for amino acid-conjugated bile acids.  相似文献   

19.
In perfused rat liver menadione elicits substantial oxidation in both the NADPH and GSH redox systems. Biliary excretion of GSSG is increased several-fold. Menadione derivatives appear in the bile predominantly as the menadione-S-glutathione conjugate, thiodione (60%), or as conjugates derived therefrom (17%). About 10% appear as menadione glucuronides. The excretion of taurocholate into bile is strongly inhibited upon menadione infusion. The inhibition of taurocholate excretion is small in livers with a low content of Se-GSH-peroxidase and in glutathione-depleted livers. In these livers intracellular GSSG and biliary GSSG release remain at low values, although menadione still imposes oxidative stress as indicated by an oxidation of intracellular NADPH. Under anoxic conditions menadione has little influence on both the NADPH and GSH redox systems and also on biliary taurocholate excretion. The amount of thiodione released into bile is similar to that found under normoxia, whereas the amount of glucuronidated products almost doubled. We conclude (a) that intracellular formation of GSSG by menadione occurs via the generation of hydrogen peroxide; (b) that the inhibition of biliary taurocholate excretion by menadione is related to the increased formation of glutathione disulfide; and (c) that menadione derivatives show little, if any, contribution to the inhibition of taurocholate excretion.  相似文献   

20.
The drug transporter, multidrug resistance-associated protein 2 (ABCC2/Mrp2), is known to play important roles in excretion of various drugs. In the present study, we investigated whether Mrp2 is involved in the transport of micafungin, a newly developed antifungal agent. When Sprague-Dawley rats received an intravenous injection of micafungin (1 mg/kg) in combination with cyclosporine, the cyclosporine significantly delayed the disappearance of micafungin from plasma and decreased the systemic clearance and volume of distribution at steady-state of micafungin to 54% and 65% of the corresponding control values, respectively. When Sprague-Dawley rats received a constant-rate infusion of micafungin, cyclosporine significantly decreased the steady-state biliary clearance of micafungin (~80%). A significant decrease in the biliary clearance of micafungin (~60%) was observed in Eisai hyperbilirubinemic rats, which have a hereditary deficiency in Mrp2. The present findings at least suggest that Mrp2 is involved mainly in the hepatobiliary excretion of micafungin in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号