首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preferential utilization of Imp7/8 in nuclear import of Smads   总被引:1,自引:0,他引:1  
Trafficking of Smad proteins between the cytoplasm and nucleus is a critical component of transforming growth factor beta (TGF-beta) signal transduction. Smad4 translocates into the nucleus either in response to TGF-beta stimulation or when its nuclear export is blocked by leptomycin B (LMB). We demonstrate that both TGF-beta-induced and basal state spontaneous nuclear import of Smad4 require importin 7 and 8 (Imp7,8). Our data suggest that in the nuclear import of Smad4, the role of Imp8 is irreplaceable by Imp7, and that Smads preferentially bind Imp8. Interestingly, in contrast to its mammalian counterpart Smad4, Drosophila Medea appears to utilize different mechanisms for TGF-beta-induced or basal state nuclear accumulation, with the latter independent of Msk (Drosophila Imp7/8) function. In addition, overexpression of Imp8 alone was sufficient to cause an increased concentration of Smad1, 3 and 4 in the nucleus, but had very limited effects on Smad2. These observations suggest selective involvement of Imp8/Msk in nuclear import of different Smads under different conditions.  相似文献   

2.
The nucleocytoplasmic transport processes are mediated by soluble transport factors constantly navigating between nuclear and cytoplasmic compartments. Our understanding about nuclear export of general 'nuclear import factors' that deliver the cargo to the nucleus is still fragmentary. Utilizing green fluorescent protein tagged glucocorticoid receptor (GR) and relA as our working model and with judicious use of LMB, we show in living cells that all the soluble components of the nuclear import machinery exit nucleus via exportin1/CRM1 independent pathway(s).  相似文献   

3.
4.
5.
Upon stimulation by the transforming growth factor beta (TGF-beta), Smad2 and Smad3 are phosphorylated at their C termini and assemble into stable heteromeric complexes with Smad4. These complexes are the functional entities that translocate into the nucleus and regulate the expression of TGF-beta target genes. Here we report that the TGF-beta-activated phospho-Smad3/Smad4 complex utilizes an importin-independent mechanism for nuclear import and engages different nucleoporins for nuclear import compared with the monomeric Smad4. Within the heteromeric complex, phospho-Smad3 appears to dominate over Smad4 in the nuclear import process and guides the complex to its nuclear destination. We also demonstrate that the binding of phospho-Smad3 to Smad4 prevents Smad4 from interacting with the nuclear export receptor chromosome region maintenance 1. In this way, TGF-beta signaling suppresses nuclear export of Smad4 by chromosome region maintenance 1 and thereby targets Smad4 into the nucleus. Indeed tumorigenic mutations in Smad4 that affect its interaction with Smad2 or Smad3 impair nuclear accumulation of Smad4 in response to TGF-beta.  相似文献   

6.
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation.  相似文献   

7.
Nuclear protein transport processes have largely been studied using in vitro semi‐intact cell systems where high concentrations of nuclear localizing substrates are used, and cytoplasmic components such as the microtubule (MT) network, are either absent or damaged. Here we use the fluorescence recovery after photobleaching (FRAP) technique to analyze the nucleocytoplasmic flux of distinct fluorescently tagged proteins over time in living cultured cells. FRAP was performed in different parts of the cell to analyze the kinetics of nucleocytoplasmic trafficking and intranuclear/cytoplasmic mobility of the tumor suppressor Rb protein and a SV40 large tumor antigen (T‐ag) derivative containing the nuclear localization sequence (NLS), both fused to green fluorescent protein (GFP). The results indicate that proteins carrying the T‐ag NLS are highly mobile in the nucleus and cytoplasm. Rb, in contrast, is largely immobile in both cellular compartments, with similar nuclear import and export kinetics. Rb nuclear export was CRM‐1‐mediated, with its reduced mobility in the cytoplasm in part due to association with MTs. Overall our results show that nuclear and cytoplasm retention modulates the rates of nuclear protein import and export in intact cells. J. Cell. Biochem. 107: 1160–1167, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
BACKGROUND: At M phase, cyclin B1 is phosphorylated in the cytoplasmic retention sequence (CRS), which is required for nuclear export. During interphase, cyclin B1 shuttles between the nucleus and the cytoplasm because constitutive nuclear import is counteracted by rapid nuclear export. In M phase, cyclin B moves rapidly into the nucleus coincident with its phosphorylation, an overall movement that might be caused simply by a decrease in its nuclear export. However, the questions of whether CRS phosphorylation is required for cyclin B1 translocation in mitosis and whether a reduction in nuclear export is sufficient to explain its rapid relocalisation have not been addressed. RESULTS: We have used two forms of green fluorescent protein to analyse simultaneously the translocation of wild-type cyclin B1 and a phosphorylation mutant of cyclin B1 in mitosis, and correlated this with an in vitro nuclear import assay. We show that cyclin B1 rapidly translocates into the nucleus approximately 10 minutes before breakdown of the nuclear envelope, and that this movement requires the CRS phosphorylation sites. A cyclin B1 mutant that cannot be phosphorylated enters the nucleus after the wild-type protein. Phosphorylation of the CRS creates a nuclear import signal that enhances cyclin B1 import in vitro and in vivo, in a manner distinct from the previously described import of cyclin B1 mediated by importin beta. CONCLUSIONS: We show that phosphorylation of human cyclin B1 is required for its rapid translocation to the nucleus towards the end of prophase. Phosphorylation enhances cyclin B1 nuclear import by creating a nuclear import signal. The phosphorylation of the CRS is therefore a critical step in the control of mitosis.  相似文献   

9.
We demonstrated previously that 69- and 82-kDa human choline acetyltransferase are localized predominantly to the cytoplasm and the nucleus, respectively. We have now identified a nuclear localization signal common to both forms of enzyme using confocal microscopy to study the subcellular compartmentalization of choline acetyltransferase tagged with green fluorescent protein in living HEK 293 cells. To identify functional nuclear localization and export signals, portions of full-length 69-kDa choline acetyltransferase were cloned into the vector peGFP-N1 and the cellular distribution patterns of the fusion proteins observed. Of the nine constructs studied, one yielded a protein with nuclear localization and another produced a protein with cytoplasmic localization. Mutation of the critical amino acids in this novel putative nuclear localization signal in the 69- and 82-kDa enzymes demonstrated that it is functional in both proteins. Moreover, 69-kDa choline acetyltransferase but not the 82-kDa enzyme is transported out of the nucleus by the leptomycin B-sensitive Crm-1 export pathway. By using bikaryon cells expressing both 82-kDa choline acetyltransferase and the nuclear protein heterogeneous nuclear ribonucleoprotein with green and red fluorescent tags, respectively, we found that the 82-kDa enzyme does not shuttle out of the nucleus in measurable amounts. These data suggest that 69-kDa choline acetyltransferase is a nucleocytoplasmic shuttling protein with a predominantly cytoplasmic localization determined by a functional nuclear localization signal and unidentified putative nuclear export signal. For 82-kDa choline acetyltransferase, the presence of the unique amino-terminal nuclear localization signal plus the newly identified nuclear localization signal may be involved in a process leading to predominantly nuclear accumulation of this enzyme, or alternatively, the two nuclear localization signals may be sufficient to overcome the force(s) driving nuclear export.  相似文献   

10.
Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells   总被引:6,自引:0,他引:6  
Nuclear import of proteins that are too large to passively enter the nucleus requires soluble factors, energy, and a nuclear localization signal (NLS). Nuclear protein transport can be regulated, and different forms of stress affect nucleocytoplasmic trafficking. As such, import of proteins containing a classical NLS is inhibited in starving yeast cells. In contrast, the hsp70 Ssa4p concentrates in nuclei upon starvation. Nuclear concentration of Ssa4p in starving cells is reversible, and transfer of stationary phase cells to fresh medium induces Ssa4p nuclear export. This export reaction represents an active process that is sensitive to oxidative stress. In starving cells, the N-terminal domain of Ssa4p mediates Ssa4p nuclear accumulation, and a short hydrophobic sequence, termed Star (for starvation), is sufficient to localize the reporter proteins green fluorescent protein or beta-galactosidase to nuclei. To determine whether nuclear accumulation of Star-beta-galactosidase depends on a specific nuclear carrier, we have analyzed its distribution in mutant yeast strains that carry a deletion of a single beta-importin gene. With this assay we have identified Nmd5p as a beta-importin required to concentrate Star-beta-galactosidase in nuclei when cells enter stationary phase.  相似文献   

11.
12.
Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.  相似文献   

13.
Heterogeneous nuclear ribonucleoprotein (hnRNP) D/AUF1 functions in mRNA genesis in the nucleus and modulates mRNA decay in the cytoplasm. Although it is primarily nuclear, it shuttles between the nucleus and cytoplasm. We studied the nuclear import and export of the last exon-encoding sequence common to all its isoforms by its expression as a green fluorescent protein-fusion protein in HeLa cells and by heterokaryon assay. The C-terminal 19-residue sequence (SGYGKVSRRGGHQNSYKPY) was identified as an hnRNP D nucleocytoplasmic shuttling sequence (DNS). In vitro nuclear transport using permeabilized cells indicated that nuclear import of DNS is mediated by transportin-1 (Trn-1). DNS accumulation in the nucleus was dependent on Trn-1, Ran, and energy in multiple rounds of nuclear transport. Use of DNS with deletions, alanine scanning mutagenesis and point mutations revealed that two separate regions (the N-terminal seven residues and the C-terminal two residues) are crucial for in vivo and in vitro transport as well as for interaction with Trn-1. The N- and C-terminal motifs are conserved in the shuttling sequences of hnRNP A1 and JKTBP.  相似文献   

14.
Parathyroid hormone-related protein is responsible for hypercalcemia induced by various tumors. The similarity of its N-terminus to that of parathyroid hormone enables parathyroid hormone-related protein to share parathyroid hormone's signaling properties, but the rest of the molecule possesses distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. We have previously shown that parathyroid hormone-related protein nuclear import is mediated by importin β1. Here we use fluorescence recovery after photobleaching for the first time to show that, in living cells, parathyroid hormone-related protein is exported from the nucleus in a leptomycin B-sensitive manner, implicating CRM1 as the parathyroid hormone-related protein nuclear export receptor. Leptomycin B treatment significantly reduced the rate of nuclear export 4 −10-fold, thereby increasing parathyroid hormone-related protein concentration in the nucleus/nucleolus about 2-fold. Intriguingly, this also led to a 2-fold reduced nuclear import rate. Inhibiting the nuclear export of a protein able to shuttle between nucleus and cytoplasm through distinct receptors thus can also affect nuclear import, indicating that the subcellular localization of a protein containing distinct nuclear import and export signals is the product of an integrated system. Although there have been several recent studies examining the dynamics of intranuclear transport using fluorescence recovery after photobleaching, this represents, to our knowledge, the first use of the technique to examine the kinetics of nucleocytoplasmic flux in living cells.  相似文献   

15.
16.
17.
18.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

19.
《The Journal of cell biology》1996,134(5):1157-1168
RanBP1 is a Ran/TC4 binding protein that can promote the interaction between Ran and beta-importin /beta-karyopherin, a component of the docking complex for nuclear protein cargo. This interaction occurs through a Ran binding domain (RBD). Here we show that RanBP1 is primarily cytoplasmic, but the isolated RBD accumulates in the nucleus. A region COOH-terminal to the RBD is responsible for this cytoplasmic localization. This domain acts heterologously, localizing a nuclear cyclin B1 mutant to the cytoplasm. The domain contains a nuclear export signal that is necessary but not sufficient for the nuclear export of a functional RBD In transiently transfected cells, epitope-tagged RanBP1 promotes dexamethasone-dependent nuclear accumulation of a glucocorticoid receptor-green fluorescent protein fusion, but the isolated RBD potently inhibits this accumulation. The cytosolic location of RanBP1 may therefore be important for nuclear protein import. RanBP1 may provide a key link between the nuclear import and export pathways.  相似文献   

20.
Disabled1 (DAB1) is an intracellular mediator of the Reelin-signaling pathway and essential for correct neuronal positioning during brain development. So far, DAB1 has been considered a cytoplasmic protein. Here, we show that DAB1 is subject to nucleocytoplasmic shuttling. In its steady state, DAB1 is mainly located in the cytoplasm. However, treatment with leptomycine B, a specific inhibitor of the CRM1 (chromosomal region maintenance 1)-RanGTP-dependent nuclear export, resulted in nuclear accumulation of DAB1. By using deletion or substitutional mutants of DAB1 fused with enhanced green fluorescent protein, we have mapped a bipartite nuclear localization signal and two CRM1-dependent nuclear export signals. These targeting signals were functional in both Neuro2a cells and primary cerebral cortical neurons. Using purified recombinant proteins, we have shown that CRM1 binds to DAB1 directly in a RanGTP-dependent manner. We also show that tyrosine phosphorylation of DAB1, which is indispensable for the layer formation of the brain, by Fyn tyrosine kinase or Reelin stimulation did not affect the subcellular localization of DAB1 in vitro. These results suggest that DAB1 is a nucleocytoplasmic shuttling protein and raise the possibility that DAB1 plays a role in the nucleus as well as in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号