首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
From a variety of independent Chinese hamster cell lines, stable variants resistant to 5 μg/ml of Ara-C were isolated via a single step selection; in contrast to variants selected at lower drug concentrations, the resistant clones appear to be uniformly deficient in Ara-C phosphorylation, an activity previously shown [14] to be carried out in hamster cells by a cytoplasmic dC-kinase (dC-kinase 2). These dC-kinase deficient (dCK) variants can be selected against because they are unable to divide in a medium containing dT (0.8 mM) and dC (0.01 mM), which supports the growth of wild type dCK+ cells. Plating of dCK cells in medium supplemented with both nucleosides yields only rare clones of pseudorevertants which escape the thymidine block through a secondary unknown defect; the growth of these clones can be prevented by further addition of dA to the selective medium. As expected from the complementation pattern for the deficient enzyme activities, hybrids between a dCK hamster line and TK lines of either mouse or hamster could be isolated in a modified HAT medium (HAT50dC) containing dC and an increased dT concentration. In principle, the same selection can be used to isolate interspecific and intraspecific hybrids between Ara-C resistant variants obtained from a variety of mammalian species and azaguanine resistant lines deficient in HGPRT. The potential interest of this sytem for genetic mapping is discussed.  相似文献   

2.
Variants isolated from mutagenized Chinese hamster fibroblasts by a single cycle of exposure to ara-C distributed into two classes: (1) deoxycytidine (dC) kinase deficient clones with a high level of resistance, this phenotype was recessive in hybrids; and (2) clones exhibiting joint resistance to thymidine (dT) and to "low" ara-C concentration, this phenotype was accounted for by an increased dCTP pool. The incorporation of exogenous dC into macromolecules was markedly altered in these variants. In hybrids, the phenotype of joint resistance to dT and ara-C was semidominant. Through a second selection step, variants cumulating recessive high resistance to ara-C and semidominant dT resistance were recovered. The identification of these two classes of ara-C-resistant variants suggests an interpretation of the known phenotypes of ara-C resistance as manifestations of chromosomal gene mutations. Dominant resistance mutations might contribute to the survival of cancer cells during prolonged ara-C chemotherapy.  相似文献   

3.
By manipulation of Cd and Zn concentrations in the medium, several phenotypes, differing in the contents of glutathione (GSH) and metallothionein (Mt), were derived from a parental clone of V79 Chinese hamster fibroblast. In some of these phenotypes, resistance to Cd and cross-resistance to oxidative stress was developed. The highest levels of GSH and Mt were found in cells which were rendered resistant to Cd by stepwise increases of Cd and Zn in the cell medium for over 50 passages. Upon removal of Cd/Zn from the medium of these cells or addition of Cd/Zn to the parental cell medium, changes of cellular GSH and Mt levels occurred to different extents. At the same time, changes in the resistance to Cd and H2O2 were observed. Good linear correlations were observed for Mt levels x resistance to Cd and for GSH levels x resistance to H2O2. Poor linear correlations were found for Mt levels x resistance to H2O2 or for GSH levels x resistance to Cd. Moreover, addition of Zn to the medium produced an increase in Mt content without affecting the GSH content. In this case no cross-resistance to oxidative stress was developed. Therefore, Mt which has been shown to be an excellent antioxidant in in vitro experiments, does not seem to play any major role against oxidative stress in Zn and Cd challenged cells. Most of the cross-resistance to oxidative stress in Cd challenged cells seems to be accounted for by the parallel increase in GSH.  相似文献   

4.
Eleven independent lines of Syrian hamster cells were selected by using very low levels of N-(phosphonacetyl)-L-aspartate (PALA), an inhibitor of aspartate transcarbamylase. The protocol employed insured that each resistant cell arose during one of the last divisions before selection was applied. Cells of each mutant line contained an amplification of the structural gene for CAD, a trifunctional protein which includes aspartate transcarbamylase and two other enzymes of UMP biosynthesis. Strikingly, despite the minimal selection employed, the degree of amplification of the CAD gene was 6 to 10 times the normal diploid number in all 11 cases. In situ hybridization indicated that the amplified CAD genes were almost always present at a single chromosomal site in each line. Therefore, one of the two alleles was amplified 11- to 19-fold. The rates at which cells became resistant to PALA, determined by fluctuation analysis, were 100 times less dependent on drug concentration than were the frequencies of resistant cells in steady-state populations. The relatively shallow dependence of this rate upon PALA concentration is consistent with our independent observation that most events gave rise to a similar degree of amplification. In six of six cell lines examined, the levels of CAD mRNA and aspartate transcarbamylase activity were elevated two- to fourfold. These lines were resistant to PALA concentrations 20- to 80-fold higher than the ones used for selection. The organization of amplified DNA was examined by hybridizing Southern blots with cloned DNA fragments containing amplified sequences, previously isolated from two cell lines resistant to high levels of PALA. A contiguous region of DNA approximately 44 kilobases long which included the CAD gene was amplified in five of five single-step mutants examined. Outside this region, these mutants shared amplified sequences with only one of the two highly resistant lines.  相似文献   

5.
Genetic characterizations of the Chinese hamster ovary cell mutants resistant to the DNA polymerase inhibitors (aphidicolin, ara-A and ara-C) have been described. Resistance to all three inhibitors showed dominance among the progeny of somatic cell crosses between the wild type and mutant parents. Analysis of the segregation of the drug-resistant character among 566 hybrid progeny from somatic crosses between the wild type (aphs, ara-As, and ara-Cs) and the triple mutants (aphr, ara-Ar, ara-Cr) showed the involvement of at least three unlinked genes in controlling the expression of the resistance to different DNA polymerase inhibitors. The mutant (aphr) DNA was used to transfect aphidicolin resistance to recipient mouse Ltk- cells either directly or in combination with the plasmid pTK2 DNA. The aphidicolin resistance of the transfected cells was found to be a stable phenotype and could be used in multiple rounds of transfection, indicating the chromosomal integration of the transfecting gene.  相似文献   

6.
7.
The rates of intracellular RNA synthesis at various temperatures between 33 and 41 °C were determined in Chinese hamster lung fibroblasts by measuring average amounts of [3H]uridine incorporated per cell per unit of time. The energy of activation and Q20 for intracellular RNA synthesis were calculated from the slopes of the relative rates of RNA synthesis in hamster fibroblasts vs time, plotted on Arrhenius coordinates. The incorporation of uridine into RNA is characterized by an energy of activation of 19 200 calories/mole and a Q10 of 2.71. The absolute rates of RNA synthesis were determined at various temperatures, with values ranging from 1.55 to 0.60 × 10−15 g RNA/min/cell at 41 to 33 °C, respectively.  相似文献   

8.
239 nistatin-resistant mutants were selected after UV-irradiation of yeasts. Phenotypical analysis has revealed two main groups of the mutants: 1) resistant to nistatin and resistant or sensitive (in different combinations) to haptaens; 2) resistant to nistatin and having an increased resistance to haptens. It is found that the sensitivity dominates over the resistance and hyper-resistance. Genetic analysis of the mutant collection has shown that the resistance to nistatin is determined by 5 nuclear genes (hysr). Hyper-resistance is controlled by mutations in other genes, which are not connected with stable phenotype. Genes of hyper-resistance can be considered as minus-modificators of pleiothrophic cross-resistance, characteristic of hysr genes. Plus-modificator genes of polyenic resistance are described. The gene hysr1 is linked with its chromosome.  相似文献   

9.
Guanine, unlike adenine and hypoxanthine, can not eliminate the inhibitory effect of adenine analogues on the growth and flavinogenesis of Eremothecium ashbyii. Guanine does not restore riboflavin synthesis inhibited with 5-10(-3) M 8-azaguanine. Low adenine concentrations (10(-4)-3-10(-4) M), which do not influence the inhibitory effect of 5.-10(-3) M 8-azaguanine, restore the riboflavin synthesis in combination with guanine. On the basis of the data obtained as well as the data of biochemical analysis it is concluded that the riboflavin producer studied lacks guanosinemonophosphate reductase. The mutants resistant to various concentrations of 8-azaguanine have been obtained. In all mutants resistant to 8-azaguanine the efficiency of the incorporation of 14C-guanine and 14C-adenine into mycelium is decreased as compared with the susceptible strain. The mutant Azg-R 10 resistant to high (3-10(-3) M) concentrations of 8-azaguanine, 8-azaadenine and 2,6-diaminopurine secretes inosine-like compounds when grown in a synthetic medium. The stepwise increase of the mutant resistance to 8-azaguanine from 10(-4) M TO 3-10(-3) M did not result in further enhancement of riboflavin synthesis.  相似文献   

10.
11.
We have identified and characterized insulin receptors on Chinese hamster ovary (CHO) cells. Insulin binds in a time, temperature and pH dependent fashion and insulin analogues compete for 125I-insulin binding in order of their biological potencies. Furthermore, two CHO cell glycosylation mutants, B4-2-1, lacking high mannose containing glycoproteins, and Lec 1.3c, lacking complex carbohydrate containing glycoproteins, bind insulin with a much higher and lower affinity respectively than wild type cells. This is the first report of insulin receptors on CHO cells and the first to use glycosylation mutants to study the effects of abnormal carbohydrates on insulin binding.  相似文献   

12.
Establishment of Chinese hamster ovary (CHO) cell lines expressing human glutathione S-transferase-pi (GST-pi) was performed after cotransfection of pSV2-neo and human GST-pi cDNA-carrying plasmid p beta actGPi-2. About 30 G418-resistant clones were tested for their expression of GST-pi by Northern blot analysis. Two clones, beta 2-3 and beta 2-5, expressed a significant amount of GST-pi mRNA; and one clone, beta 1-1, that did not was also used for further study. Western blot analysis with anti-GST-pi antibody showed significant increases of GST-pi in beta 2-3 and beta 2-5, but not in beta 1-1. Northern blot analysis with the human GST-pi cDNA probe showed that the increase in the expression of GST-pi-mRNA in beta 2-3 and beta 2-5 was respectively 2- and 4-fold higher than that in beta 1-1. Southern blotting analysis showed that beta 1-1, beta 2-3 and beta 2-5 contained about one copy of the human GST-pi cDNA sequence. beta 2-3 and beta 2-5 were resistant to 1.4- and 3.0-fold higher doses of CDDP than CHO, respectively, but beta 1-1 was not. Increased expression of GST-pi might be associated with CDDP-resistance in CHO cells.  相似文献   

13.
A class of purine auxotrophs blocked early in the purine biosynthetic pathway was examined. The inability of these mutants to accumulate formylglycinamide ribotide (FGAR) in the presence of azaserine suggested that one or more of the first three enzymes of the pathway were either missing or defective. By direct enzyme assay, phosphoribosylpyrophosphate (PRPP) amidotransferase (E.C. 2.4.2.14) was found to be absent in extracts of mutant cells. Thus these cells were unable to convert PRPP to phosphoribosylamine (PRA). By reacting ribose 5-phosphate with ammonium ions, PRA was generated nonenzymatically in the incubation mixture, thus enabling us to test for the presence of the two enzymes required to convert PRA to FGAR. It was demonstrated that sufficient amounts of these enzymes, phosphoribosylglycineamide synthetase (E.C. 6.3.1.3) and phosphoribosylglycineamide formyltransferase (E.C. 2.1.2.2), were present in mutant extracts to allow synthesis of FGAR to occur once PRA was so provided.  相似文献   

14.
P Ross  F O'Gara    S Condon 《Applied microbiology》1990,56(7):2164-2169
The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.  相似文献   

15.
A Eastman  N Schulte 《Biochemistry》1988,27(13):4730-4734
Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells.  相似文献   

16.
17.
Chinese hamster V79 cell mutants resistant to compactin (ML236B) were isolated. A resistant clone, MF-2, grown in the presence of 2 micrograms/ml of ML236B for 1 week showed a 30-fold increase in 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-Co A) reductase activity compared to MF-2 grown in the absence of ML236B, and cells grown for 4 weeks showed a 53-fold increase. Apparent ultrastructural changes in thin sections of the MF-2 cells were observed after growth in ML236B: dilated cisternae in the rough endoplasmic reticulum had or did not have flocculated contents; there was significant distension of perinuclear space; and vesicular inclusion bodies were present in nuclei.  相似文献   

18.
A fungal metabolite, ML236B (Compactin), isolated from Penicillium citrinum, is a specific inhibitor of 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A reductase (EC 1.1.1.34). Three ML236B-resistant (ML236Br) mutants, MF-1, MF-2, and MF-3, were isolated from V79 after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. The fluctuation test showed 2.2 X 10(-6) mutants per cell per generation of a spontaneous mutation frequency of ML236Br clones. These ML236Br clones showed a four- to fivefold-higher resistance to the drug than did their parental V79. Radioactive acetate, but not mevalonate, incorporation into the sterol fraction increased about 10-fold in ML236Br clones in comparison with that in V79. The cellular level of HMG-coenzyme A reductase in three ML236Br mutants was found to be a few-fold higher than that of V79 when cultured in the presence of lipoproteins. The 125I-labeled low-density lipoprotein-binding assay showed binding activity in three ML236Br clones comparable to that of the parental V79 cells. By contrast, an internalization assay of 125I-labeled low-density lipoprotein into the cells showed significantly reduced activity in three ML236Br clones in comparison with V79.  相似文献   

19.
20.
DNA sequence polymorphisms in transthyretin (TTR) genes were investigated by single-strand conformation polymorphism (SSCP) analysis of polymerase chain reaction products. The amplified DNA fragments that encode each exon of the normal TTR gene showed two bands, representing the two complementary single strands of DNA. In one patient with amyloid polyneuropathy, the exon 3 DNA showed a unique, aberrant migration pattern. Direct sequencing analysis of the amplified exon 3 revealed a single base change (G-to-T), resulting in a novel amino acid substitution (Ser-50----Ile). We also present the SSCP patterns for five known Japanese TTR variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号