首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
James E  Lee JM 《Plant cell reports》2006,25(7):723-727
This paper addresses the problem of decreasing protein expression levels in genetically modified plant cells. A modeling approach was used to explain the loss of productivity over successive generations. Using this model, productivity losses were simulated for two cell lines. Although the lines were relatively stable, the protein production level could decrease by more than 80% after a large number of generations. Motivated by this problem, a dispersion method was developed to isolate productive cells from existing cell suspensions. Dilution of transgenic cells in a feeder layer of nonproducing cells at a ratio of 1:1000 facilitated the recovery of distinct, separate daughter colonies. Applying this method, it was possible to recover high producing cell lines.  相似文献   

3.
Plant cells (Nicotiana tabacum) were genetically engineered to produce a foreign protein, chloramphenicol acetyltransferase (CAT), and the CAT production from suspension cultures was investigated. Suspension cultures were grown in a shake flask, a stirred fermenter, and a bubble-column fermenter. The CAT production was growth related and the maximum activity was reached during the early stationary phase. A 41-day, semicontinuous stirred fermenter run, consisting of five sequential batch runs, demonstrated long-term CAT production. Continuous CAT production was also accomplished in a bubble-column fermenter at a medium flow rate of 3.1 ml h-1, which was equivalent to a dilution rate of 0.25 day-1.  相似文献   

4.
Summary Quantitative studies on the genetic variation of plant viruses are very scarce, in spite of their theoretical and applied importance. We report here on the genetic variability of field isolates of the plant RNA virus tobacco mild green mosaic virus (TMGMV) naturally infecting the wild plantNicotiana glauca Grah. The populations studied were composed of a high number of haplotypes. Two main features are found regarding TMGMV variation: First, there is no correlation between genetic proximity of isolates and geographic proximity of the sites from which they were obtained; and second, the estimated divergence among haplotypes is low, and values are maintained regardless of the scale of the distance between the sites from which the isolates come. No comparable studies have been done with a plant RNA virus, and these two features seem to be unique for this system as compared with other RNA viruses.  相似文献   

5.
A new bioreactor design that allows continuous perfusion cultivation of plant cell suspensions is described in this paper. This design incorporates an internal cell settling zone with an external-loop air-lift bioreactor. The settling zone is created by inserting a baffle plate into the upper portion of the downcomer. Using this bioreactor, Anchusa officinalis suspension culture was cultivated to a cell density of 27.2 g l−1 DW in 14 days at a perfusion rate of 0.123 per day. The maximum total extracellular protein concentration attained 1.11 g l−1. Complete cell retention was achieved throughout the culture during which the maximum packed cell volume (PCV) exceeded 80%. In comparison, the maximum cell density and extracellular protein concentration in the batch culture were 12.6 g l−1 DW and 0.47 g l−1, respectively. SDS-PAGE of the extracellular protein samples revealed two major bands at 58 and 47 kDa, each accounted for approximately 45% of the total secreted proteins.  相似文献   

6.
BackgroundGas Permeable Rapid Expansion (G-Rex) bioreactors have been shown to efficiently expand immune cells intended for therapeutic use, but do not address the complexity of the viral transduction step required for many engineered T-cell products. Here we demonstrate a novel method for transduction of activated T cells with Vectofusin-1 reagent. Transduction is accomplished in suspension, in G-Rex bioreactors. The simplified transduction step is integrated into a streamlined process that uses a single bioreactor with limited operator intervention.MethodsPeripheral blood mononuclear cells (PBMCs) from healthy donors were thawed, washed and activated with soluble anti-CD3 and anti-CD28 antibodies either in cell culture bags or in G-Rex bioreactors. Cells were cultured in TexMACS GMP medium with interleukin (IL)-7 and IL-15 and transduced with RetroNectin in bags or Vectorfusin-1 in the G-Rex. Total viable cell number, fold expansion, viability, transduction efficiency, phenotype and function were compared between the two processes.ResultsThe simplified process uses a single vessel from activation through harvest and achieves 56% transduction with 29-fold expansion in 11 days. The cells generated in the simplified process do not differ from cells produced in the conventional bag-based process functionally or phenotypically.DiscussionThis study demonstrates that T cells can be transduced in suspension. Further, the conventional method of generating engineered T cells in bags for clinical use can be streamlined to a much simpler, less-expensive process without compromising the quality or function of the cell product.  相似文献   

7.
Plant cells have been demonstrated to be an attractive heterologous expression host (using whole plants and in vitro plant cell cultures) for foreign protein production in the past 20years. In recent years in vitro liquid cultures of plant cells in a fully contained bioreactor have become promising alternatives to traditional microbial fermentation and mammalian cell cultures as a foreign protein expression platform, due to the unique features of plant cells as a production host including product safety, cost-effective biomanufacturing, and the capacity for complex protein post-translational modifications. Heterologous proteins such as therapeutics, antibodies, vaccines and enzymes for pharmaceutical and industrial applications have been successfully expressed in plant cell culture-based bioreactor systems including suspended dedifferentiated plant cells, moss, and hairy roots, etc. In this article, the current status and emerging trends of plant cell culture for in vitro production of foreign proteins will be discussed with emphasis on the technological progress that has been made in plant cell culture bioreactor systems.  相似文献   

8.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was produced from transgenic Nicotiana tabacum cells. The application of osmotic stress through the addition of 90 g/l mannitol to the plant cell medium enhanced the maximum extracellular GM-CSF concentration from 76 g/l to 130 g/l (1.7-fold increase). The addition of bovine serum albumin (BSA), along with mannitol, further increased the maximum extracellular GM-CSF concentration by as much as 2.5-fold over the control. GM-CSF degradation studies in conditioned medium demonstrated that mannitol and BSA both stabilize the GM-CSF protein. The addition of gelatin together with mannitol to the plant cell medium also enhanced the maximum extracellular GM-CSF concentration and stability over time.  相似文献   

9.
10.
The expression of a fusion protein formed between the avian infectious bronchitis virus M protein and the bacterial enzyme beta-glucuronidase (GUS) in plants promotes the formation of new organization of the endoplasmic reticulum in tobacco plants. This unusual organization of the membranes, never present in nontransformed plants, has been explained by the oligomerization of the GUS domains of the IBVM-GUS fusion proteins. These specific organized membranes could have broad implications for biotechnology since their formation could be used as a mechanism for retaining and accumulating resident proteins in specific and discrete membrane compartments. In this study, we have shown that the unusual organization of native membranes due to overexpression of the IBVM-GUS fusion gene in tobacco transgenic plants and calli is present at higher levels in plant cell suspensions than in plant tissues. In these cell suspensions, IBVM-GUS protein was continuously synthesized and accumulated throughout the cell culture. An enrichment of the chimeric IBVM-GUS protein corresponding to a five-fold increase in the microsomal fractions was achieved and the GUS enzyme did not show any modification on enzyme kinetics. However, the GUS activity could be differentially distributed in the fractions eluted at different pH suggesting differences in the surface topography of histidine residues for this recombinant GUS.  相似文献   

11.
12.
Effective community engagement is an important legal, ethical, and practical prerequisite for conducting field trials of genetically modified mosquitoes, because these studies can substantially impact communities and it is usually not possible to obtain informed consent from each community member. Researchers who are planning to conduct field trials should develop a robust community engagement strategy that meets widely recognized standards for seeking approval from the affected population, such as timeliness, consent, information sharing, transparency, understanding, responsiveness, mutual understanding, inclusiveness, and respectfulness. Additional research is needed on the effectiveness of different methods of engaging communities in field trials of genetically modified mosquitoes and how to respond to public opposition to genetically modified organisms. For research programs involving the genetic modification of disease vectors to move forward, they must have public acceptance and support, which cannot be achieved without effective community engagement.  相似文献   

13.
Vacuoles in plant cells can be eliminated by centrifugation of protoplasts through a density gradient. In this review, properties of evacuolated protoplasts, named ‘miniprotoplasts’, and the significant roles in plant cytoskeleton studies are described. Miniprotoplasts, prepared from tobacco BY-2 cells whose cell-cycle had been synchronized at late anaphase, continued to divide to form two daughter cells. In the presence of cytochalasin B cytokinetic cleavage was enhanced, suggesting a role of actin filaments in plant cytokinesis. In the cytoplasmic extract of miniprotoplasts both tubulin and actin could be polymerized to form microtubules (MTs) and actin filaments (AFs), respectively. A purification method for tubulin, actin and related proteins was developed using the extract. To investigate the interaction between cortical microtubules and the plasma membrane, an experimental system in which MTs were reconstructed on membrane ghosts was developed by combination of membrane ghosts and the extract.  相似文献   

14.
We have developed a method by which remarkably higher efficiencies of transient and stable transformation were achieved in bombardment transformation of plants. Over fivefold increase in transient gus gene expression was achieved when rice or maize suspension cells were bombarded with gold particles coated with plasmid DNA in the presence of protamine instead of the conventional spermidine. A 3.3-fold improvement in stable transformation efficiency was also observed using rice suspension cells with the new coating approach. The coated protamine-plasmid DNA complex resisted degradation by a DNase or by rice cell extract much longer than the spermidine-plasmid DNA complex. The results from this study suggest that protamine protects plasmid DNA longer than spermidine when being delivered inside the cells, probably by forming a nano-scale complex, and thus helps improve the efficiency of particle bombardment-mediated plant transformation.  相似文献   

15.
Summary In vitro assembly and morphological characteristics of purified 58 kDa, 52 kDa, 50 kDa, and 45 kDa polypeptides in the leaves and the cotyledons of the cabbage (Brassica pekinensis Rupt.) were investigated by electron microscopy and scanning tunneling microscopy. The three or four purified intermediate filament (IF) polypeptides can spontaneously assemble into intermediate filaments in vitro with a 23–24 nm axial repeat, which indicates that keratin IFs in higher plant cells have the same molecular arrangement as in animal cells. STM images suggest that the plant keratin filaments display a pronounced structural polymorphism, which can be composed of 3 nm, 4.5 nm, or 6 nm wide keratin protofilaments.Abbreviation IF intermediate filament - STM scanning tunneling microscopy - SDS sodium dodecyl sulfate - BCIP 5-bromo-4-chloro-3-indolyl phosphate-toluidine - NBC p-nitroblue tetrazolium chloride - PMSF phenylmethyl sulfonylfluoride - HOPG high oriented pyrolytic graphite  相似文献   

16.
Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response to cryptogein, a well studied elicitor of defence response, and partly responsible for cryptogein-induced NO production. However, other cryptogein-induced calcium-dependent events including anion efflux, H2O2 production, MAPK activation and hypersensitive response (HR) did not depend on iGluRs indicating that different calcium channels regulate different processes at the cell level. We have also demonstrated that cryptogein induces efflux of glutamate in the apoplast by exocytosis. Taken together, our results demonstrate for the first time, an involvement of a putative iGluR in plant defence signaling and NO production, by mechanisms that show homology with glutamate mode of action in mammals.  相似文献   

17.
Testing of seed and grain lots is essential in the enforcement of GM labelling legislation and needs reliable procedures for which associated errors have been identified and minimised. In this paper we consider the testing of oilseed rape seed lots obtained from the harvest of a non-GM crop known to be contaminated by volunteer plants from a GM herbicide tolerant variety. The objective was to identify and quantify the error associated with the testing of these lots from the initial sampling to completion of the real-time PCR assay with which the level of GM contamination was quantified. The results showed that, under the controlled conditions of a single laboratory, the error associated with the real-time PCR assay to be negligible in comparison with sampling error, which was exacerbated by heterogeneity in the distribution of GM seeds, most notably at a small scale, i.e. 25 cm3. Sampling error was reduced by one to two thirds on the application of appropriate homogenisation procedures.  相似文献   

18.
19.
For many workers, the most exciting recent advances in the realm of plant cell biotechnology, center on results obtained from experiments concerned with the genetic engineering of plant cells. Various groups of workers have managed to introduce new genetic material into plant cells, using Ti-plasmids (or modified Ti-plasmids) from Agrobacterium tumefaciens. This genetic material has been expressed (with varying degrees of efficiency), in each case. Thus the way may possibly be coming clear to produce plant cell cultures, or whole plants with entirely new or novel properties. Other areas in which progress has been made, are in the design of media conditions to promote secondary product formation, and in ways of immobilizing plant cells and enzymes, to achieve efficient secondary product formation.  相似文献   

20.
Summary. Concurrently with cold-induced disintegration of microtubular structures in the cytoplasm, gradual tubulin accumulation was observed in a progressively growing proportion of interphase nuclei in tobacco BY-2 cells. This intranuclear tubulin disappeared upon rewarming. Simultaneously, new microtubules rapidly emerged from the nuclear periphery and reconstituted new cortical arrays, as was shown by immunofluorescence. A rapid exclusion of tubulin from the nucleus during rewarming was also observed in vivo in cells expressing GFP-tubulin. Nuclei were purified from cells that expressed GFP fused to an endoplasmic-reticulum retention signal (BY-2-mGFP5-ER), and green-fluorescent protein was used as a diagnostic marker to confirm that the nuclear fraction was not contaminated by nuclear-envelope proteins. These purified, GFP-free nuclei contained tubulin when isolated from cold-treated cells, whereas control nuclei were void of tubulin. Furthermore, highly conserved putative nuclear-export sequences were identified in tubulin sequences. These results led us to interpret the accumulation of tubulin in interphasic nuclei, as well as its rapid nuclear export, in the context of ancient intranuclear tubulin function during the cell cycle progression. Correspondence and reprints: Department of Plant Physiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号