首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The species and stage specificities of membrane components active in promoting reaggregation of cells dissociated from embryos of the two Mediterranean sea urchin species Paracentrotus lividus and Arbacia lixula have been examined. Membrane proteins extracted with butanol either from purified membranes or from dissociated cells without significant reduction of viability promoted reaggregation of both the homologous and heterologous species. Extracts from plutei and blastulae were equally effective in promoting reaggregation of blastula cells. By contrast, Fab's prepared from IgG raised against these extracts or purified membranes are strictly species specific because they prevent reaggregation of cells and actively dissociate live embryos of only the homologous species. No corresponding stage specificity of the Fab was observed: Fab against extracts from blastula embryos also caused dissociation of plutei. Antigenic analysis of the extracts by the Ouchterlony test revealed the presence of components specific for each species as well as others common to both.  相似文献   

2.
3.
DK Hincha  JH Crowe 《Cryobiology》1998,36(3):245-249
Chloroplast thylakoids contain three classes of glycolipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG). We have investigated the stability of large unilamellar vesicles made from egg phosphatidylcholine (EPC) and different chloroplast glycolipids during freezing to -18 degreesC, as a function of the presence of three sugars: glucose, sucrose, or trehalose. Contrary to the situation in thylakoids, where cryoprotection increases from glucose < sucrose < trehalose, liposomes containing 50% DGDG showed the opposite behavior. In fact, carboxyfluorescein leakage increased over the control values (freezing in the absence of sugar) in the presence of trehalose. This effect was not seen in vesicles made from pure EPC, or a mixture of EPC and MGDG, or EPC and SQDG. Liposomes made from mixtures of all three glycolipids, however, showed even more leakage in the presence of trehalose than liposomes containing only DGDG and EPC. Copyright 1998 Academic Press.  相似文献   

4.
A novel antigen carrier has been formulated on the basis of a cucumarioside-A2-2 triterpene glycoside (CD) complex with cholesterol and monogalactosyldiacylglycerol from Ahnfeltia tobuchiensis (MGDGAt) and Ulva fenestrate (MGDGUf). Morphological and immunostimulative characteristics of the carrier were studied. Electron microscopy experiments demonstrated the formation of homogeneous tubular structures in a mixture of CD, cholesterol, and MGDG in molar ratio of 1: 2: 3. In animals immunized by the carrier bearing pore forming protein monomer of pseudotuberculosis agent CD and MGDG synergically affected synthesis of specific antibodies, interleukin-2, and γ-interferon and delayed hypersensitivity reaction when compared to Freund’s complete adjuvant or to immunostimulatory complexes between Quillaja saponaria saponins and phosphatidylcholine from egg yolk. The immunostimulatory effect depends upon the composition of polyunsaturated fatty acids of MGDG. The new tubular adjuvant carrier is a competitive adjuvant, as it includes CD obtained from far-eastern sea cucumber commercial species Cucumaria japonica, and MGDG from seaweed.  相似文献   

5.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

6.
Arbutin (hydroquinone-beta-D-glucopyranoside) is an abundant solute in the leaves of many freezing- or desiccation-tolerant plants. Its physiological role in plants, however, is not known. Here we show that arbutin protects isolated spinach (Spinacia oleracea L.) thylakoid membranes from freeze-thaw damage. During freezing of liposomes, the presence of only 20 mM arbutin led to complete leakage of a soluble marker from egg PC (EPC) liposomes. When the nonbilayer-forming chloroplast lipid monogalactosyldiacylglycerol (MGDG) was included in the membranes, this leakage was prevented. Inclusion of more than 15% MGDG into the membranes led to a strong destabilization of liposomes during freezing. Under these conditions arbutin became a cryoprotectant, as only 5 mM arbutin reduced leakage from 75% to 20%. The nonbilayer lipid egg phosphatidylethanolamine (EPE) had an effect similar to that of MGDG, but was much less effective, even at concentrations up to 80% in EPC membranes. Arbutin-induced leakage during freezing was accompanied by massive bilayer fusion in EPC and EPC/EPE membranes. Twenty percent MGDG in EPC bilayers completely inhibited the fusogenic effect of arbutin. The membrane surface probes merocyanine 540 and 2-(6-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosph ocholi ne (NBD-C(6)-HPC) revealed that arbutin reduced the ability of both probes to partition into the membranes. Steady-state anisotropy measurements with probes that localize at different positions in the membranes showed that headgroup mobility was increased in the presence of arbutin, whereas the mobility of the fatty acyl chains close to the glycerol backbone was reduced. This reduction, however, was not seen in membranes containing 20% MGDG. The effect of arbutin on lipid order was limited to the interfacial region of the membranes and was not evident in the hydrophobic core region. From these data we were able to derive a physical model of the perturbing or nonperturbing interactions of arbutin with lipid bilayers.  相似文献   

7.
Abstract— When exchange between liposomal phosphatidylcholine and that in a whole myelin fraction from guinea-pig brain was studied, very little exchange was observed. In order to investigate the reason for this phenomenon, myelin lipids in the Ca2+ form were prepared and subjected to sonication under the same conditions usually used to study phosphatidylcholine exchange. Despite the high cholesterol content in these extracts, this treatment produced liposomes of a size (12 nm Stoke's radius) similar to that of pure phosphatidylcholine liposomes. In this form, myelin total lipids were capable of undergoing exchange, and this was only demonstrable in the fraction containing phosphatidylcholine and that containing phosphatidylinositol. Since the level of acidic phospholipids in these total lipid extracts is potentially capable of producing 40% inhibition of phosphatidylcholine exchange (H ellings et al , 1974; B rammer & S heltawy , 1975), control experiments were carried out to ensure that the observed phosphatidylcholine exchange in the myelin lipid extract was not due to the loss of phosphoinositides. This was found to be the case, and it was concluded therefore that total myelin lipids, in the Ca2+ form, are capable of phosphatidylcholine exchange and that the observed lack of it in the whole myelin is due either to the effect of myelin proteins or the compact structure of the myelin membrane.
Calculations based on the difference between the rate of phosphatidylcholine exchange in the myelin liposomes and in the sonicated phosphatidylcholine liposomes indicated that the phosphatidylcholine is asymmetrically distributed in the myelin liposomes. Almost all the phosphatidylcholine seems to be present in the outer half of the bilayer.  相似文献   

8.
Structure of Lipid Tubules Formed from a Polymerizable Lecithin   总被引:1,自引:1,他引:0       下载免费PDF全文
We have studied tubules formed from a polymerizable lipid in aqueous dispersion using freeze-fracture replication and transmission electron microscopy. The polymerizable diacetylenic lecithin 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine converts from liposomes to hollow cylinders, which we call tubules, on cooling through its chain melting phase transition temperature. These tubules differ substantially from cochleate cylinders formed by phosphatidylserines on binding of calcium. The tubules have diameters that range from 0.3 to 1 μm and lengths of up to hundreds of micrometers depending on conditions of formation. The thickness of the walls varies from as few as two bilayers to tens of bilayers in some longer tubules. Their surfaces may be either smooth, gently rippled, or with spiral steps depending on sample preparation conditions, including whether the lipids have been polymerized. The spiral steps may reflect the growth of the tubules by rolling up of flattened liposomes.  相似文献   

9.
The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques.  相似文献   

10.
In the course of development of semi-preparative liquid chromatographic methods for the isolation of individual quillaja saponins from Quillaja saponaria (L.), some commercially available quillaja bark extracts revealed a distinctive and characteristic pattern of additional peaks in the chromatogram that could not be attributed to saponins commonly present in quillaja. To identify these peaks, analytical procedures based on HPLC coupled with high resolution MS detection were optimized which allowed the identification of the additional saponins Mi saponin A, Mi saponin B, Mi saponin C, madhucoside A and madhucoside B. These compounds are known to be the main saponins of the Indian plant Madhuca longifolia (L.). Tandem MS experiments were performed for the unambiguous assignment of the sapogenin. Madhuca saponins yielded a characteristic fragment of protobassic acid, whereas quillaja saponins showed a fragment of quillaic acid as expected. In addition, samples from madhuca seed kernels were analysed to verify the origin of the characteristic chromatographic peak pattern observed frequently in commercially available quillaja bark extracts.  相似文献   

11.
Summary Fermentation with Chaetomium cellulolyticum was carried out on media containing either Avicel cellulose or newspaper. Production of free cellulolytic enzymes, cellulose degradation and the formation of cell protein were studied with the original strain and a mutant strain.  相似文献   

12.
The frequency of spontaneous in vitro contractions of seminiferous tubules of the rat appeared to be increased in a dose-dependent manner by prostaglandin F. PGF treatment increased the tonus of the smooth muscle cells in the wall of the tubules as indicated by a reduction in the diameter of the tubules. When the tubules were rinsed successively with fresh Tyrode's solution, the contractile frequency was diminished. Returning the original bathing medium to the tubules restored their contractile frequency, as did treatment of the rinsed tubules with PGF (10−7 M). Pre-injecting the rats with indomethacin tended to reduce the contractile frequency of the extirpated tubules. Treating the tubules with a solution of indomethacin for 90 min. in vitro was more effective than pretreatment in vivo in reducing contractile frequency, but a combination of these two procedures produced the greatest inhibition. PGF restored the contractile frequency of the indomethacin-treated tubules. Our results indicate that PGs modulate the in vitro contractility of the tubules.  相似文献   

13.
Summary Cell-free extracts of Methylosinus trichosporium 0B3b (MT 0B3b) containing the soluble, broad specificity methane mono-oxygenase (MMO) have been shown to catalyse yet another type of reaction : O-dealkylation. Several 4-substituted anisoles were investigated as substrates, all showed O-demethylation to varying extents by cell-free extracts of the bacterium. This catalytic ability is common to organisms grown on either methane or methanol as sole carbon source, although the rates of biotransformation are lower for the latter. O-demethylation of anisole itself was inhibited (> 99%) by ethyne, a known MMO inhibitor, strongly indicating that the MMO is the enzyme responsible for this catalysis.  相似文献   

14.
Methods for the detection of bacterial chitinase activity were compared. The soluble substrate p-nitrophenyl-ß-D-N,N diacetyl chitobiose (NDC) was more sensitive in detecting purified chitinase of Serratia marcescens than assays measuring degradation of a solid chitin substrate by either radiochemical or colorimetric means. A chimaeric gene containing a S. marcescens chitinase gene under control of a Cauliflower Mosaic Virus 35S promoter and nopaline synthase terminator sequences was constructed and transferred to tobacco tumour cells using Agrobacterium tumefaciens as a vector. The rate of hydrolysis of the NDC substrate was three fold greater with cell extracts of both pooled and individual tumours carrying the chimaeric chitinase gene than in control tumours. It was calculated from the enzyme activity data that the foreign bacterial chitinase contributed 0.1% of the total soluble protein in transformed plant cells. This level of expression of this gene was not detectable using the less sensitive assays employing solid chitin substrate. These results indicate that NDC is a preferable substrate for assaying bacterial chitinase in transformed plant cells.  相似文献   

15.
The effect of three sea cucumber saponins, echinoside A, bivittoside D and holothurin A, on multilamellar liposomes was investigated. An ideal osmotic behavior of liposomes was described as a linear relationship between the reciprocal 32s power of absorbance at 450 nm and the osmotic gradient across the membrane. Sea cucumber saponins at concentrations below critical micelle concentration (CMC) disturbed this linear relationship in liposomes composed of egg phosphatidylcholine, phosphatidic acid and cholesterol. Cholesterol-free liposomes were not susceptible to these saponins. Results of optical measurements were consistent with those of transmission electron microscopy, which showed saponin-induced changes in liposomal structure. The lytic activity of sea cucumber saponins on liposomes depended on their chemical structure.These results suggest that sea cucumber saponins as monomers can interact with liposomes and that cholesterol serve as a principal binding site for the sea cucumber saponins.  相似文献   

16.
Summary Growth ofKluyveromyces fragilis NRC 2475 and the production of ethanol by the yeast were studied in the media containing one of the following sugars: glucose, lactose, galactose, or a glucose-galactose (50% 50%) mixture as a carbon source.The largest biomass yield and the lowest yield of ethanol were obtained in the medium containing glucose. The medium containing galactose gave the lowest yield of biomass and the largest yield of ethanol. When lactose was used for the growth and production of ethanol the obtained results for both biomass and ethanol were between those obtained with glucose and galactose.The ethanol productivities, expressed in terms of ethanol produced either per unit of cells, or per unit of cells and time, were the highest in the system with galactose and the lowest in that with glucose.  相似文献   

17.
Internal wool lipids (IWLs) are rich in cholesterol, free fatty acids, cholesteryl sulfate, and, mainly, ceramides. The repairing effect of these lipids structured as liposomes was demonstrated by reinforcing the skin-barrier integrity and increasing the water-holding capacity when applied onto the skin. This work was focused on the formation of liposomes with IWLs rich in ceramides, obtained at pilot plant level with organic solvent extraction by using methanol and acetone. The lipid composition of the two extracts was quantitatively analyzed. IWL extracts containing different amounts of sterol sulfate were used to form liposomes at physiologic pH. Vesicle size distribution, polydispersity index, and zeta potential of all liposomes were determined to characterize them and to study their stability. The results obtained showed that IWL extract composition, which was different depending on the extraction methodologies used, greatly influences the characteristics of the liposomes formed. Vesicular size and polydispersity index liposomes were smaller when the extract composition contained a higher proportion of either free fatty acids or sterol sulfate. Moreover, liposome stability was improved when some amount of sterol sulfate was added to the composition of methanol and acetone extracts. This natural mixture with keratinaceous origin could have a special interest for cosmetic or dermopharmaceutical companies.  相似文献   

18.
Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10?ng of enzymes, against 100?ng to 10?μg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.  相似文献   

19.
A new method for reconstituting acyl coenzyme A: cholesterol acyltransferase (ACAT) activity from either Chinese hamster ovary (CHO) or human fibroblast cell extracts into cholesterol-phosphatidylcholine liposomes is described. The method is rapid (less than 60 min) and easy to perform. The procedure involves solubilizing the cell extracts with deoxycholate followed by dilution into preformed liposomes. Ficoll gradient analysis demonstrated that, after reconstitution, almost all of the detectable ACAT activity co-migrated with the liposomes. Exogenous cholesterol in the liposomes was absolutely necessary for providing ACAT activity, but not for incorporation of the ACAT enzyme into the vesicle bilayer. Human fibroblast cell extracts prepared from cells grown in medium containing 10% fetal calf serum were found to contain a 10-fold higher microsomal ACAT activity compared to extracts from cells grown in 10% delipidated fetal calf serum. In contrast, when the ACAT activity from these extracts was measured using the reconstitution assay, there was no difference in the specific activities. These results support our previous work (Doolittle, G. M., and T. Y. Chang. 1982. Biochim. Biophys. Acta. 713: 529-537; and Chang, C. C. Y., et al. 1986. Biochemistry. 25: 1693-1699), and suggest that cholesterol regulates ACAT activity in CHO cells and human fibroblasts by mechanism(s) other than modulation of the amount of enzyme.  相似文献   

20.
Mono- and digalactosyldiacylglycerol (MGDG and DGDG) were isolated from the leaves of sixteen 16:3 plants. In all of these plant species, the sn-2 position of MGDG was more enriched in C16 fatty acids than sn-2 of DGDG. The molar ratios of prokaryotic MGDG to prokaryotic DGDG ranged from 4 to 10. This suggests that 16:3 plants synthesize more prokaryotic MGDG than prokaryotic DGDG. In the 16:3 plant Spinacia oleracea L. (spinach), the formation of prokaryotic galactolipids was studied both in vivo and in vitro. In intact spinach leaves as well as in chloroplasts isolated from these leaves, radioactivity from [1-14C]acetate accumulated 10 times faster in MGDG than in DGDG. After 2 hours of incorporation, most labeled galactolipids from leaves and all labeled galactolipids from isolated chloroplasts were in the prokaryotic configuration. Both in vivo and in vitro, the desaturation of labeled palmitate and oleate to trienoic fatty acids was higher in MGDG than in DGDG. In leaves, palmitate at the sn-2 position was desaturated in MGDG but not in DGDG. In isolated chloroplasts, palmitate at sn-2 similarly was desaturated only in MGDG, but palmitate and oleate at the sn-1 position were desaturated in MGDG as well as in DGDG. Apparently, palmitate desaturase reacts with sn-1 palmitate in either galactolipid, but does not react with the sn-2 fatty acid of DGDG. These results demonstrate that isolated spinach chloroplasts can synthesize and desaturate prokaryotic MGDG and DGDG. The finally accumulating molecular species, MGDG(18:3/16:3) and DGDG(18:3/16:0), are made by the chloroplasts in proportions similar to those found in leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号