首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Myxococcus xanthus is a Gram-negative gliding bacterium that aggregates and develops into multicellular fruiting bodies in response to starvation. Two chemosensory systems (frz and dif), both of which are homologous to known chemotaxis proteins, were previously identified through characterization of various developmental mutants. This study aims to examine the interaction between these two systems since both of them are required for fruiting body formation of M. xanthus. Through detailed phenotypic analyses of frz and dif double mutants, we found that both frz and dif are involved in cellular reversal and social motility; however, the frz genes are epistatic in controlling cellular reversal, whereas the dif genes are epistatic in controlling social motility. The study suggests that the integration of these two chemotaxis systems may play a central role in controlling the complicated social behaviors of M. xanthus.  相似文献   

2.
The extracellular matrix fibrils of Myxococcus xanthus are essential for the social lifestyle of this unusual bacterium. These fibrils form networks linking or encasing cells and are tightly correlated with cellular cohesion, development, and social (S) gliding motility. Previous studies identified a set of bacterial chemotaxis homologs encoded by the dif locus. It was determined that difA, difC, and difE, encoding respective homologs of a methyl-accepting chemotaxis protein, CheW, and CheA, are required for fibril production and therefore S motility and development. Here we report the studies of three additional genes residing at the dif locus, difB, difD, and difG. difD and difG encode homologs of chemotaxis proteins CheY and CheC, respectively. difB encodes a positively charged protein with limited homology at its N terminus to conserved bacterial proteins with unknown functions. Unlike the previously characterized dif genes, none of these three newly studied dif genes are essential for fibril production, S motility, or development. The difB mutant showed no obvious defects in any of the processes examined. In contrast, the difD and the difG mutants were observed to overproduce fibril polysaccharides in comparison with production by the wild type. The observation that DifD and DifG negatively regulate fibril polysaccharide production strengthens our hypothesis that the M. xanthus dif genes define a chemotaxis-like signal transduction pathway which regulates fibril biogenesis. To our knowledge, this is the first report of functional studies of a CheC homolog in proteobacteria. In addition, during this study, we slightly modified previously developed assays to easily quantify fibril polysaccharide production in M. xanthus.  相似文献   

3.
Myxococcus xanthus social (S) gliding motility has been previously reported by us to require the chemotaxis homologues encoded by the dif genes. In addition, two cell surface structures, type IV pili and extracellular matrix fibrils, are also critical to M. xanthus S motility. We have demonstrated here that M. xanthus dif genes are required for the biogenesis of fibrils but not for that of type IV pili. Furthermore, the developmental defects of dif mutants can be partially rescued by the addition of isolated fibril materials. Along with the chemotaxis genes of various swarming bacteria and the pilGHIJ genes of the twitching bacterium Pseudomonas aeruginosa, the M. xanthus dif genes belong to a unique class of bacterial chemotaxis genes or homologues implicated in the biogenesis of structures required for bacterial surface locomotion. Genetic studies indicate that the dif genes are linked to the M. xanthus dsp region, a locus known to be crucial for M. xanthus fibril biogenesis and S gliding.  相似文献   

4.
Bellenger K  Ma X  Shi W  Yang Z 《Journal of bacteriology》2002,184(20):5654-5660
In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, respectively, are required for M. xanthus social gliding (S) motility and development. Both difA and difE mutants were also defective in the biogenesis of the cell surface appendages known as extracellular matrix fibrils. In this study, we investigated the roles of the CheW homologue encoded by difC, a gene at the same locus as difA and difE. We showed that difC mutations resulted in defects in M. xanthus developmental aggregation, sporulation, and S motility. We demonstrated that difC is indispensable for wild-type cellular cohesion and fibril biogenesis but not for pilus production. We further illustrated the ectopic complementation of a difC in-frame deletion by a wild-type difC. The identical phenotypes of difA, difC, and difE mutants are consistent and supportive of the hypothesis that the Dif chemotaxis homologues constitute a chemotaxis-like signal transduction pathway that regulates M. xanthus fibril biogenesis and S motility.  相似文献   

5.
Xu Q  Black WP  Ward SM  Yang Z 《Journal of bacteriology》2005,187(18):6410-6418
Myxococcus xanthus fibril exopolysaccharide (EPS), essential for the social gliding motility and development of this bacterium, is regulated by the Dif chemotaxis-like pathway. DifA, an MCP homolog, is proposed to mediate signal input to the Dif pathway. However, DifA lacks a prominent periplasmic domain, which in classical chemoreceptors is responsible for signal perception and for initiating transmembrane signaling. To investigate the signaling properties of DifA, we constructed a NarX-DifA (NafA) chimera from the sensory module of Escherichia coli NarX and the signaling module of M. xanthus DifA. We report here the first functional chimeric signal transducer constructed using genes from organisms in two different phylogenetic subdivisions. When expressed in M. xanthus, NafA restored fruiting body formation, EPS production, and S-motility to difA mutants in the presence of nitrate. Studies with various double mutants indicate that NafA requires the downstream Dif proteins to function. We propose that signal inputs to the Dif pathway and transmembrane signaling by DifA are essential for the regulation of EPS production in M. xanthus. Despite the apparent structural differences, DifA appears to share similar transmembrane signaling mechanisms with enteric sensor kinases and chemoreceptors.  相似文献   

6.
7.
Myxococcus xanthus, a nonflagellated gliding bacterium, exhibits multicellular behavior during vegetative growth and fruiting body formation. The frizzy (frz) genes are required to control directed motility for these interactions. The frz genes encode proteins that are homologous to all of the major enteric chemotaxis proteins, with the exception of CheZ. In this study, we characterized FrzCD, a protein which is homologous to the methyl-accepting chemotaxis proteins from the enteric bacteria. FrzCD, unlike the other methyl-accepting chemotaxis proteins, was found to be localized primarily in the cytoplasmic fraction of cells. FrzCD migrates as a ladder of bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, reflecting heterogeneity due to methylation or demethylation and to deamidation. FrzCD was shown to be methylated in vivo when cells were exposed to yeast extract or Casitone and demethylated when starved in buffer. We used the methylation state of FrzCD as revealed by Western blot (immunoblot) analyses to search for stimuli that are recognized by the frz signal transduction system. Common amino acids, nucleotides, vitamins, and sugars were not recognized, but certain lipids and alcohols were recognized. For example, the saturated fatty acids capric acid and lauric acid stimulated FrzCD methylation, whereas a variety of other saturated fatty acids did not. Lauryl alcohol and lipoic acid also stimulated methylation, as did phospholipids containing lauric acid. In contrast, several short-chain alcohols, such as isoamyl alcohol, and some other solvents caused demethylation. The relatively high concentrations of the chemicals required for a response may indicate that these chemicals are not the relevant signals recognized by M. xanthus in nature. Isoamyl alcohol and isopropanol also had profound effects on the behavior of wild-type cells, causing them to reverse continuously. Cells of frzB, frzF, and frzG mutants also reversed continuously in the presence of isoamyl alcohol, whereas cells of frzA, frzCD, or frzE mutants did not. On the basis of the data presented, we propose a model for the frz signal transduction pathway in M. xanthus.  相似文献   

8.
In Myxococcus xanthus morphogenetic cell movements constitute the basis for the formation of spreading vegetative colonies and fruiting bodies in starving cells. M. xanthus cells move by gliding and gliding motility depends on two polarly localized engines, type IV pili pull cells forward, and slime extruding nozzle-like structures appear to push cells forward. The motility behaviour of cells provides evidence that the two engines are localized to opposite poles and that they undergo polarity switching. Several proteins involved in regulating polarity switching have been identified. The cell surface-associated C-signal induces the directed movement of cells into nascent fruiting bodies. Recently, the molecular nature of the C-signal molecule was elucidated and the motility parameters regulated by the C-signal were identified. From the effect of the C-signal on cell behaviour it appears that the C-signal inhibits polarity switching of the two motility engines. This establishes a connection between cell polarity, signalling by an intercellular signal and morphogenetic cell movements during fruiting body formation.  相似文献   

9.
Social (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis (eps) region and the EPS-associated (eas) region. Mutants with insertions in the eps and eas regions were defective in S-motility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.  相似文献   

10.
The frizzy (frz) genes of Myxococcus xanthus are required to control directed motility during vegetative growth and fruiting body formation. FrzCD, a protein homologous to the methyl-accepting chemotaxis proteins from enteric bacteria, is modified by methylation in response to environmental conditions. Transfer of cells from rich medium to fruiting medium initially caused rapid demethylation of FrzCD. Subsequently, the amount of FrzCD increased, but most remained unmethylated. At about the time of mound formation (9 h), most of the FrzCD was converted to methylated forms. Dispersal of developing cells (10 h) in buffer led to the demethylation of FrzCD, whereas concentration of these cells caused methylation of FrzCD. Some mutants which were unable to form fruiting bodies still modified their FrzCD during incubation under conditions of starvation on a surface.  相似文献   

11.
Myxococous xanthus cells can glide both as individual cells, dependent on A dventurous motility (A motility), and as groups of cells, dependent upon S ocial motility (S motility), Tn5-lac mutagenesis was used to generate 16 new A- and nine new S- mutations. In contrast with previous results, we find that subsets of A- mutants are defective in fruiting body morphogenesis and/or myxospore differentiation. All S- mutants are defective in fruiting body morphogenesis, consistent with previous results. Whereas some S- mutants produce a wild-type complement of spores, others are defective in the differentiation of myxospores. Therefore, a subset of the A genes and all of the S genes are critical for fruiting body morphogenesis. Subsets of both A and S genes are essential for sporulation. Three S::Tn5–lac insertions result in surprising phenotypes. Colonies of two S- mutants glide on ‘swim’ (0.35% agar) plates to form fractal patterns. These S- mutants are the first examples of a bacterium in which mutations result in fractal patterns of colonial spreading. An otherwise wild-type strain with one S- insertion resembles the frz- sglA1- mutants upon development, suggesting that this S- gene defines a new chemotaxis component in M. xanthus.  相似文献   

12.
The gliding bacterium Myxococcus xanthus aggregates to form spore-filled fruiting bodies when nutrients are limiting. Defective fruiting-body formation and sporulation result from mutations in the sasA locus, which encodes the wzm wzt wbgA (formerly rfbABC ) lipopolysaccharide (LPS) O-antigen biosynthesis genes. Mutants carrying these same sasA mutations are defective in social motility and form small glossy colonies. We report here that the developmental and motility phenotypes of four mutants each containing different Tn 5 insertions in LPS O-antigen biosynthesis genes are similar to those of the original sasA locus mutants. All of the LPS O-antigen mutants tested exhibited defective developmental aggregation and sporulated at only 0.02–15% of the wild-type level. In addition, all of the LPS O-antigen mutants were determined by genetic analyses to be wild type for adventurous motility and defective in social motility, indicating that the LPS O-antigen is necessary for normal development and social motility. The two previously identified cell-surface components required for social motility, type IV pili and the protein-associated polysaccharide material termed fibrils, were detected on the surfaces of all of the LPS O-antigen mutants. This indicates that LPS O-antigen is a third cell-surface component required for social motility.  相似文献   

13.
Myxococcus xanthus is a gram-negative bacterium which has a complex life cycle that includes multicellular fruiting body formation. Frizzy mutants are characterized by the formation of tangled filaments instead of hemispherical fruiting bodies on fruiting agar. Mutations in the frz genes have been shown to cause defects in directed motility, which is essential for both vegetative swarming and fruiting body formation. In this paper, we report the discovery of a new gene, called frgA (for frz-related gene), which confers a subset of the frizzy phenotype when mutated. The frgA null mutant showed reduced swarming and the formation of frizzy aggregates on fruiting agar. However, this mutant still displayed directed motility in a spatial chemotaxis assay, whereas the majority of frz mutants fail to show directed movements in this assay. Furthermore, the frizzy phenotype of the frgA mutant could be complemented extracellularly by wild-type cells or strains carrying non-frz mutations. The phenotype of the frgA mutant is similar to that of the abcA mutant and suggests that both of these mutants could be defective in the production or export of extracellular signals required for fruiting body formation rather than in the sensing of such extracellular signals. The frgA gene encodes a large protein of 883 amino acids which lacks homologues in the databases. The frgA gene is part of an operon which includes two additional genes, frgB and frgC. The frgB gene encodes a putative histidine protein kinase, and the frgC gene encodes a putative response regulator. The frgB and frgC null mutants, however, formed wild-type fruiting bodies.  相似文献   

14.
The Myxococcus xanthus dif locus encodes several bacterial chemotaxis homologues that are crucial for fibril exopolysaccharide (EPS) production, social gliding motility, and fruiting body development. In primary sequence, DifA is homologous to methyl-accepting chemotaxis protein, DifC to CheW, DifD to CheY, DifE to CheA, and DifG to CheC. In this study, the interactions among the Dif chemotaxis-like proteins were investigated using the yeast two-hybrid (Y2H) system. DifC was found to interact with both DifA and DifE. Using a modified Y2H or a three-hybrid system, it was demonstrated that DifC is capable of mediating the formation of DifA, DifC, and DifE ternary protein complexes. The conserved domains of DifE, based on sequence analysis, likely reflect functional conservations of CheA-type kinases, because its P2 domain interacts with DifD, P5 with DifC, and the P3 domain appears to dimerize. Similarly, C-terminal regions of DifA appear to dimerize as well. In addition, DifG was found to interact with DifD, which is consistent with the hypothesis that DifG is a phosphatase of DifD-phosphate. These findings support the models in which Dif proteins constitute a unique chemotaxis-like signal transduction pathway with central functions in regulating EPS production in M. xanthus.  相似文献   

15.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

16.
17.
Myxococcus xanthus dsp and dif mutants have similar phenotypes in that they are deficient in social motility and fruiting body development. We compared the two loci by genetic mapping, complementation with a cosmid clone, DNA sequencing, and gene disruption and found that 16 of the 18 dsp alleles map to the dif genes. Another dsp allele contains a mutation in the sglK gene. About 36.6 kb around the dsp-dif locus was sequenced and annotated, and 50% of the genes are novel.  相似文献   

18.
Social gliding motility in Myxococcus xanthus depends on the presence of Type IV pili. To begin to examine the role of pili in social motility, 17 mutants were identified which had lost social motility, but still expressed pili. Four of these mutants carry point mutations which mapped to a locus upstream of the recently identified pilS , pilR , and pilA genes. Sequencing of this locus revealed a gene with homology to pilT from Pseudomonas aeruginosa . Sequencing of the four point mutations revealed that they occurred within the M. xanthus pilT locus. A markerless deletion within M. xanthus pilT , similar to the four point mutations, disrupted social gliding behaviour but did not interfere with pilus formation or pilus-dependent cell–cell agglutination. Using time-lapse videomicroscopy, residual social motility was observed in dsp strains (known to be deficient in fibril but not pilus production); this was not observed in a Δ pilT dsp double mutant. Two genes flanking pilT  were also sequenced, and found to have homology to pilB and pilC from P. aeruginosa . Markerless deletions within these genes caused both pilus and social-motility defects. These results indicate that M. xanthus pilB and pilC are required for pilus biogenesis, while pilT is required for assembled pili to play their role in social motility. Thus, pilB , pilT , pilC , pilS , pilR and pilA form a contiguous cluster of pil genes required for social motility.  相似文献   

19.
Myxococcus xanthus is a bacterium that moves by gliding motility and exhibits multicellular development (fruiting body formation). The frizzy (frz) mutants aggregate aberrantly and therefore fail to form fruiting bodies. Individual frz cells cannot control the frequency at which they reverse direction while gliding. Previously, FrzCD was shown to exhibit significant sequence similarity to the enteric methyl-accepting chemotaxis proteins. In this report, we show that FrzCD is modified by methylation and that frzF encodes the methyltransferase. We also identify a new gene, frzG, whose predicted product is homologous to that of the cheB (methylesterase) gene from Escherichia coli. Thus, although M. xanthus is unflagellated, it appears to have a sensory transduction system which is similar in many of its components to those found in flagellated bacteria.  相似文献   

20.
A deletion mutation of the gene for protein S (tps), a development-specific protein of Myxococcus xanthus, was constructed. No significant differences in the process of fruiting body formation or the yield of myxospores were observed between mutant and wild-type cells. On the other hand, when the tps gene was deleted together with a 2.0-kilobase sequence including the ops gene immediately upstream of the tps gene, fruiting body formation was substantially delayed, and the yield of myxospores was reduced. These results indicate that protein S is not essential for differentiation of M. xanthus, whereas a gene product(s) coded from the sequence upstream of the tps gene appears to be required for normal fruiting body formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号