首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existence of autocrine growth factors (aGFs) may influence the serum requirement for growth of hybridoma cells and thus significantly influence process economics. For the murine hybridoma cell line S3H5/2bA2, critical inoculum density (cID) and serum requirement for growth were inversely related for cultivation in both T flasks and spinner flasks. In spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 103 cell/ml was necessary in RPMI 1640 medium with 10% serum. In T flasks, where the local cell density is higher than in spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 1 cell/ml was also necessary in RPMI 1640 medium with 10% serum. Further, immobilized cells at high local cell density could grow under conditions where cells in T flasks at corresponding overall cell density could not grow. The cells at high inoculum density were less sensitive to shear induced by mechanical agitation than the cells at low inoculum density. Taken together these observations support the existence of secreted aGF(s) by the hybridoma cell line used. Since the specific MAb production rate was independent of cultivation method and inoculum density, the existence of autocrine growth factors would suggest that the use of immobilized cells should improve the economics of MAb production.  相似文献   

2.
Vero cells growth and rabies production in IPT-AF medium, a property animal-component-free medium are described in this work. Kinetics of cell growth and rabies virus (strain LP 2061) production were first conducted in spinner flasks. Over eight independent experiments, Vero cell growth in IPT-AF medium, on 2 g/l Cytodex 1 was consistent. An average Cd (cell division number) of 3.3 ± 0.4 and a specific growth rate μ of 0.017 ± 0.006 h−1 were achieved. Such performances were comparable to those obtained in serum-containing medium (MEM + 10% FCS). Rabies virus production on Vero cells in IPT-AF medium was also optimised in spinner flasks. The effects of multiplicity of infection (MOI), regulation of glucose level at 1 g/l and cell washing step, were investigated. The highest virus titer was achieved when the cells were infected at an MOI of 0.1; this level was equal to 107 FFU/ml. The step of medium exchange before cell infection can be omitted; nevertheless in this case glucose level should be maintained at 1 g/l to avoid a decrease of specific virus productivity. Process optimisation in a 2-l stirred bioreactor pointed out that the aeration mode was the prominent parameter that affected cell growth in IPT-AF medium and on Cytodex 1 microcarriers. An acceptable level of cell density (cell density level of 1.5 × 106 cells/ml) was achieved when cells were grown in batch mode and using headspace aeration. Nevertheless, this aeration mode is not optimal for large-scale culture. The addition of Pluronic F68 at 0.1% at 24 h post inoculation as well as the switch from surface aeration mode to the sparged mode, 2 days after the start of the culture, had markedly improved cell growth performance. A cell density level of 5.5 × 106 cells/ml was reached when cells were grown in a 2-l bioreactor, on 3 g/l Cytodex 1 in IPT-AF medium and using the recirculation culture mode. Cell infection at an MOI of 0.1 and using perfused culture, resulted in a maximal virus titer of 3.5 × 107 FFU/ml. The activity of the pooled inactivated rabies virus harvests showed a protective activity that meets WHO requirements.  相似文献   

3.
Summary It has been shown that the growth of Spodoptera frugiperda cells is significantly reduced or ceased under oxygen limiting culture conditions. This paper describes the use of a new membrane-aerated spinner flask which was compared to conventional surface-aerated spinner flasks with regard to growth of the insect cell line Sf9 and recombinant protein production after infection with baculovirus. Using a commercially available serum-free culture medium Sf9 cells reached highest cell densities (3×106 ml–1) in the membrane-aerated spinner flask. Production of recombinant protein was also influenced by the oxygen supply. In the membrane-aerated spinner flask and in a surface-aerated spinner flask with reduced filling volume more than 20000 U ml–1 of a recombinant interleukin-2 variant were accumulated whereas only 100 U ml–1 were produced in a surface-aerated spinner flask with insufficient oxygen supply. Sufficient oxygenation appears to be essential for proliferation of Sf9 cells as well as recombinant protein production after infection with baculovirus. Membrane oxygenation allows sufficient oxygen supply at high cell density and an at least 2.5 fold higher filling volume per spinner unit.  相似文献   

4.
转瓶内部结构对无血清悬浮培养昆虫细胞的影响   总被引:3,自引:0,他引:3  
以昆虫细胞为宿主进行基因工程产品的开发是动物细胞培养领域十分有吸引力的研究方向[1] 。由于昆虫细胞对营养要求极高 ,且对培养环境非常敏感 ,所以一般是在含有兼具营养及保护功能的胎牛血清的培养基中进行培养。血清一方面因其高额成本而限制了昆虫细胞大规模培养技术的发展 ,另一方面又因其成分复杂、富含蛋白而给外源基因表达产物的后处理带来困难。因此 ,昆虫细胞无血清培养技术的开发一直是细胞培养工程领域的研究热点 ,采用无血清培养技术取代传统的有血清培养技术已成为昆虫细胞 杆状病毒表达系统的发展趋势[2 ] 。然而 ,昆虫细…  相似文献   

5.
Mammalian cells are the most frequently used hosts for biopharmaceutical proteins manufacturing. Inoculum quality is a key element for establishing an efficient bioconversion process. The main objective in inoculation expansion process is to generate large volume of viable cells in the shortest time. The aim of this paper was to optimize the inoculum preparation stage of baby hamster kidney (BHK)-21 cells for suspension cultures in benchtop bioreactors, by means of a combination of static and agitated culture systems. Critical parameters for static (liquid column height: 5, 10, 15 mm) and agitated (working volume: 35, 50, 65 mL, inoculum volume percentage: 10, 30 % and agitation speed: 25, 60 rpm) cultures were study in T-flask and spinner flask, respectively. The optimal liquid column height was 5 mm for static culture. The maximum viable cell concentration in spinner flask cultures was reached with 50 mL working volume and the inoculum volume percentage was not significant in the range under study (10–30 %) at 25 rpm agitation. Agitation speed at 60 rpm did not change the main kinetic parameters with respect to those observed for 25 rpm. These results allowed for a schedule to produce more than 4 × 109 BHK-21 cells from 4 × 106 cells in 13 day with 1,051 mL culture medium.  相似文献   

6.
Assay of Variola Virus by the Fluorescent Cell-Counting Technique   总被引:7,自引:6,他引:1       下载免费PDF全文
A quantitative assay for infective variola virus particles was developed which is based on the enumeration of cells containing fluorescent viral antigen after infection of McCoy cell monolayers. The direct fluorescent-antibody technique was employed to stain cells. The efficiency of virus adsorption was markedly enhanced by centrifugation of virus inoculum onto McCoy cell monolayers at 500 x g for 15 min. By this procedure, a proportionality was obtained between the number of fluorescent cells and volume of inoculum. Observations on the sequential development of viral antigen within cells and counts of fluorescent cells showed that the optimal time for enumerating fluorescent cells was after an incubation period of 16 to 20 hr. A linear function existed between virus concentration and cell-infecting units. Fluorescent cells were distributed randomly in infected cover slip cell monolayers. The assay was demonstrated to be highly sensitive, precise, and reproducible.  相似文献   

7.
The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted.  相似文献   

8.
Adaptation of the vaccinia virus expression system to HeLa S3 suspension bioreactor culture for the production of recombinant protein was conducted. Evaluation of hollow fiber perfusion of suspension culture demonstrated its potential for increased cell density prior to infection. The hollow fiber was also used for medium manipulations prior to infection. Two process parameters, multiplicity of infection (MOI) and temperature during the protein production phase, were evaluated to determine their effect on expression of the reporter protein, enhanced green fluorescent protein (EGFP). An MOI of 1.0 was sufficient for infection and led to the highest level of intracellular EGFP expression. Reducing the temperature to 34 °C during the protein production phase increased production of the protein two-fold compared to 37 °C in spinner flask culture. Scaling up the process to a 1.5-liter bioreactor with hollow fiber perfusion led to an overall production level of 9.9 μg EGFP/106 infected cells, or 27 mg EGFP per liter.  相似文献   

9.
A clone, AH-01S, derived from a human monocytic leukemia cell line, THP-1, grew rapidly in a serum-free medium containing insulin, transferrin, ethanolamine, and sodium selenite. In batch culture using the serum-free medium, the AH-01S cells proliferated at a specific growth rate (μ) of 0.30 to 0.50 (1/day) from a cell concentration of 1 × 104 cells/ml to 1.6 × 106 cells/ml, an increase of 160 times. A higher cell concentration of 0.45 × 107 cells/ml (cell volume ratio was 0.5%) was obtained in spinner flask culture using the serum-free medium. A mean specific growth rate 0.50 (1/day) was also observed in a culture in a fully instrumented cell culture fermentor. However, μ decreased drastically after the cell concentration reached 1.5 × 106 cells/ml. Analyses of medium composition during cultivation revealed that under lower cell concentration, l-glutamine was the main carbon source while glucose was converted to lactate almost stoichiometrically, and that the production of lactate from glucose decreased at higher cell concentrations. To obtain cultures of 1 × 109 cells, 1,200 to 1,300 mg of a carbon source (glucose) and 400 to 500 of amino acids were consumed during high cell concentration cultivation of the AH-01S cells in the serum-free medium.  相似文献   

10.
The effect of several controlled variables on the peak titer and fold increase of Rift Valley fever virus grown in suspension culture on two variants of Earle's L cell, L-DR and L-MA clone 1-1, was studied. No significant amount of cell-associated virus was found at 24 hr, indicating a release of virus soon after its formation. Mild sonic treatment of the virus produced in serum-free medium increased the infective titer about 10x. This difference was not observed with virus produced in medium supplemented with serum. Peak titer was not affected by medium used during the infection period, by multiplicity of inoculum (MOI), or by initial cell concentration within the test range of 10(4) to 2 x 10(6) cell/ml. Cell strain employed influenced titer, because the L-DR cell did not produce virus efficiently at low MOI and low initial cell concentration. The time of peak titer and fold replication was dependent on MOI and initial cell concentration. Differences in virus propagation in monolayer and suspension systems are discussed.  相似文献   

11.
Summary A shear-sensitive hybridoma cell line, incapable of growth or antibody production in spinner or shake flasks agitated at 40 rpm, was grown successfully in a perfusion propagation system consisting of a bioreactor (1.5 liter), stirred with a cell-lift impeller at 60 rpm, and a tangential flow filtration unit for removal of spent culture medium from the reactor. The culture was maintained over a 48 day period and cell numbers reached 1.8 × 107 cells/ml. Maximal monoclonal antibody concentration was 800 ug/ml, indicating a productivity of 504 mg/day.  相似文献   

12.
Expression of a gene encoding the extracellular domain of the human growth hormone receptor (hGHR-ED) inserted into the genome of Autographa californica nuclear polyhedrosis virus was done using a desktop-scale spinner culture. Spodoptera frugiperda 9 (Sf9) cells infected with the recombinant virus secreted a protein with hGH-binding activity into the medium. Oxygen supplementation was required for high level secretion of the product. The highest cell production capability was estimated at more than 15 mg hGHR-ED/liter of culture. A protein-free medium supported the production similar to that obtained in traditional serum-containing media. This spinner culture system is simple to operate, and does not require expert knowledge of culture techniques.  相似文献   

13.
Cells of the human embryonic kidney cell line (HEK 293) grown in repeated suspension and perfusion systems were characterized and described. Cell aggregates that formed immediately after the HEK 293 cells were inoculated in stirred vessels in serum-containing Dulbecco’s modified Eagle’s medium (D-MEM)/F-12 medium. The mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 63 to 239 μm after 1 and 8 days of culture in spinner flasks, respectively. No significant differences in cell performance were observed between HEK 293 cell populations grown as suspended aggregates and those grown as anchored monolayers. Replacing the D-MEM/F-12 with CD 293 medium caused the compact spherical cell aggregates to dissociate into single cells and small irregular aggregates without any apparent effect on cell performance. Moreover, the spherical cell aggregates could reform from individual cells and small aggregates when exposed to the serum-containing D-MEM/F-12 dominant medium. Perfusion culture of HEK 293 cells grown as suspended aggregates in a 7.5-l stirred tank bioreactor for 17 days resulted in a maximum viable cell density of 1.2×107 cells ml−1. These results demonstrate the feasibility and proof-of-concept for using aggregates as an immobilization system in large-scale stirred bioreactors because a small-scale culture can be used as easily as the inoculum for larger bioreactors.The first two authors contributed equally to this work.  相似文献   

14.
We have studied parameters for optimizing the Spodoptera frugiperda (Sf9) cell culture and viral infection for the production of Anticarsia gemmatalis multiple nucleopolyhedrosis virus (AgMNPV) polyhedra inclusion bodies (PIBs) in shaker-Schott or spinner bottles and bioreactors. We have assayed the kLa of the systems, initial cell seeding, cell culture volume, dissolved oxygen (DO), multiplicity of infection (MOI), nutrients consumption, and metabolites production. The medium surface oxygen transfer was shown to be higher in shaker bottles than in spinner ones, which was in direct correlation to the higher cell density obtained. Best quantitative performances of PIBs production were obtained with a SF900II medium volume/shaker-bottle volume ratio of 15% and MOI of 0.5 to 1 performed at a cell concentration at infection (CCI) of 1 to 2.5×106 cells/ml in a medium containing enough glucose and glutamine. Upon infection, a decrease in the cell multiplication was observed to be dependent on the MOI used, and the μX at the exponential growth phase in infected and non-infected cultures were, respectively, of 0.2832 and 0.3914 (day−1). The glucose consumption and lactate production were higher in the infected cultures (μGlucose and μLactate of, respectively, 0.0248 and 0.0089×10−8 g/cell×day in infected cultures and 0.0151 and 0.0046×10−8 g/cell×day in non infected ones). The glutamine consumption did not differ in both cultures (μGlutamine of 0.0034 and 0.0037×10−8 g/cell×day in, respectively, infected and non infected cultures). When a virus MOI of 0.1 to 1 was used for infection, a higher concentration of PIBs/ml was obtained. This was in direct correlation to a higher cell concentration present in these cultures, where a decrease in cell multiplication due to virus infection is minimized. When a MOI of 1 was used, a more effective decrease in cell multiplication was observed and a lower concentration of PIBs/ml was obtained, but with the best performance of PIBs/cell. Correlations between MOI and CCI indicate that a MOI 0.1 to 1.4 and a CCI of 106 to 2×106 cells/ml led to the best PIBs production performances. The virulence of PIBs produced in cultures infected at low or high MOI showed comparable DL50. Culture and infection in scaling-up conditions, performed in a bioreactor, were shown to provide the cells with a better environment and be capable of potentially improving the shaker-Schott findings. For an accurate qualitative control of PIB virulence, hemolymph from AgMNPV infected Anticarsia gemmatalis was used as starting material for passages in Sf9 cells. These led to a loss of virulence among the PIBs with an increase in the DL50. The loss of virulence was accompanied by a loss in budded virus titer, a decreased number of PIBs produced and an altered DNA restriction pattern, suggesting the generation of defective interference particles (DIPs). Transmission electron microscopy (TEM) studies revealed that after cell passages, PIBs lacking virions were progressively synthesized. The study described here point out the biological constraints and bioprocess issues for the preparation of AgMNPV PIBs for biological control.  相似文献   

15.
The ability to culture hematopoietic cells in readily characterizable and scalable stirred systems, combined with the capability to utilize serum-free medium, will aid the development of clinically attractive bioreactor systems for transplantation therapies. We thus examined the proliferation and differentiation characteristics of peripheral blood (PB) mononuclear cells (MNC), cord blood (CB) MNC, and PB CD34(+) cells in spinner flasks and (control) T-flask cultures in both serum-containing and serum-free media. Hematopoietic cultures initiated from all sources examined (PB MNC, CB MNC, and PB CD34(+) cells) grew well in spinner vessels with either serum-containing or serum-free medium. Culture proliferation in spinner flasks was dependent on both agitator design and RPM as well as on the establishment of critical inoculum densities (ID) in both serum-containing (2 x 10(5) MNC/mL) and serum-free (3 x 10(5) MNC/mL) media. Spinner flask culture of PB MNC in serum-containing medium provided superior expansion of total cells and colony-forming cells (CFC) at high ID (1.2 x 10(6) cells/mL) as compared to T-flask controls. Serum-free spinner culture was comparable, if not superior, to that observed in serum-containing medium. This is the first report of stirred culture of PB or CB MNC, as well as the first report of stirred CD34(+) cell culture. Additionally, this is the first account of serum-free stirred culture of hematopoietic cells from any source.  相似文献   

16.
As a prelude to our studies on TL and Thy-1 differentiation alloantigens, three murine lymphobhastoid cell lines were examined for expression of these components. Optimal conditions for their mass culture were also determined. Several suspension culture systems were evaluated: (a) 50 ml through 500 ml Wheaton and Bellco spinner flasks as well as 1, 4, and 8 liter Wheaton flasks modified for semicontinuous culture conditions, (b) 3 liter Chemapec Vibrofermentor, and (c) 14 liter New Brunswick fermentor. Utilizing these types of vessels the optimal culture conditions were evaluated as to the effect of: (1) pH, (2) initial concentration of cell inoculum, (3) types of media, and (4) methods of gassing and gas mixtures on the rate of growth and alloantigen expression. This study demonstrated that cells could be cultured on a semicontinuous basis up to densities of 2–4 × 106 cells/ml if a vessel of appropriate dimensions was utilized, the appropriate medium selected, and the pH controlled by CO2 and air overlay. Once these parameters were established the growth of a given cell line was highly reproducible: Under optimal culture conditions the expression of Thy-1 was maximum while the cells were in the exponential stage of growth and reduced during the lag and stationary phases of growth. The expression of TL did not vary as significantly during the various stages of growth. One cell line grown in medium supplemented with 10% horse serum expressed lass Thy-1 than those grown in medium containing 10% fetal calf serum. The factors affecting cell growth and alloantigen expression have been considered in the design of a large-scale suspension culture facility for culturing 1000 liters of cells per week.  相似文献   

17.
Reovirus serotype 3 Dearing (T3D) has shown potential as a novel cancer therapy. To support the increasing demand for reovirus, a two-stage perfusion mode scheme is proposed for cell growth and reovirus production. Mouse L-929 cells were used as the host for reovirus infection due to their ability to grow well in suspension culture. Several L-929 cell growth and reovirus infection characteristics were investigated and optimized in spinner flask batch cultures. For the growth of L-929 cells, a balanced nutrient-fortification of SMEM medium increased the maximum cell density by 30%, compared to normal SMEM; however, ammonia and lactate accumulations were found to inhibit further cell growth. For the production of reovirus, approximately 90% increase in viral yield resulted when the infection temperature was reduced from 37 to 33 degrees C. Infectious reovirus particles were shown to be stable in conditioned medium at 37 and 33 degrees C. The final virus titer was dependent on the multiplicity of infection (MOI) and the host cell density at the time of infection. A combination of an MOI of 0.1 pfu/cell and an initial host cell density of 1.0 x 10(6) cells/mL in fortified medium resulted in a maximum virus titer of (4.59 +/- 0.16) x 10(9) pfu/mL and a specific yield of (2.34 +/- 0.08) x 10(3) pfu/cell. At an optimal harvest time of the infection process, 99% of the virus was associated with the cellular debris. Finally, the presence of 5.0 mM ammonia in the culture medium was shown to seriously inhibit the reovirus yield, whereas lactate concentrations up to 20 mM had no effect.  相似文献   

18.
微载体高密度培养Vero细胞的研究   总被引:10,自引:0,他引:10  
微载体是动物细胞高密度培养的有效手段。首先在硅化的方瓶中对Cytodex 1、Cy-todex 3、Biosilon、Bellco Glass Microcarrier、CT-1、CT-3、MC-1、CT-28种国产和进口微载体进行了比较和筛选。确定以Biosilon作为Vero细胞高密度培养的首选微载体。用500mlWheaton搅拌瓶探索影响Vero细胞高密度培养的条件,表明50~60mg/ml的微载体浓度、1~2×106/ml的细胞接种密度、适当的通气(95%O_2+5%CO2)对该细胞的高密度培养具有重要意义。在200ml培养体积的Wheaton搅拌瓶中,微载体浓度为50~60mg/ml,细胞接种密度为9.24×105/ml,搅拌速度为65~85r/min,经25d培养,Vero细胞密度可达2.34×107/ml,表明50~60mg/ml的微载体浓度对培养细胞没有毒性。接着在1.5L CelliGen生物反应器中进行培养,细胞接种密度为4.98×105/ml,培养体积为1.2L,日灌流量从0.20L逐渐加大到3.65L,经22d连接灌流培养,最终细胞密度可达2.05×107/ml。  相似文献   

19.
The main disadvantages of foetal calf serum as the world-wide common serum supplement for cell growth are its content of various proteins of variable concentrations between batches as well as its high cost. The use of serum-free and protein-free media is gradually becoming one of the goals of cell culture especially for standardizing culture conditions or for simple purification of cell products like monoclonal antibodies. The mouse hybridoma cells 14/2/1 were cultivated either in protein-free UltraDOMA medium or in serum-containing RPMI medium with and without microcarriers to generate high quantities of monoclonal antibodies against neuroblastoma tumour cells. Cell growth rate, IgG production, viability, glucose and lactate concentrations, attachment rate and doubling time have been used as investigation criteria. Modifications of culture procedures (static or stirred), inoculum density, and microcarrier concentration caused an improvement of monoclonal antibody production. The kinetics of antibody synthesis was best in spinner culture with 2 ml of microcarriers in protein-free medium. These results of short-term microcarrier culture in stirred spinner flasks indicate that IgG yields in protein-free medium 2.5-fold higher to those in serum-supplemented medium can be achieved.  相似文献   

20.
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 degrees C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 microg EGFP/10(6) infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号