首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract. Natural regeneration of Pinus resinosa (red pine) seedlings around mature trees was studied in burned and unburned stands. Growth inhibitory effects of the forest organic matter on red pine seedlings was tested by a stair-step experiment using leachate of forest soil monoliths and also by a seed germination bio-assay using forest floor substrates. To test if higher burning temperatures can remove the allelopathic effects of red pine-Kalmia organic matter, a laboratory bio-assay was conducted by germinating red pine seeds on the organic matter burned at 200, 400, 600 and 800°C. Deposition of dry needles and a thick duff layer under red pine stands affected seedling establishment. Red pine seedling establishment increased with the decreasing thickness of duff layer away from the stump of the seed-bearing trees. Wildfire helped in removing the duff layer and increased seedling establishment. A high fuel load within a 0 - 1 m radius around the tree stump caused a deep burn of the organic matter including part of the soil seed reserve. On a burned-over surface, more seedlings established in a band between 1 and 2 m around the stump than inside and outside the band. Primary root growth of red pine was severely inhibited when the seedlings were grown in unburned forest floor organic matter where Kalmia was the principal understory species. Water leachate of a Pinus resinosa-Kalmia soil monolith was inhibitory to red pine seedling growth. In greenhouse conditions, the seedlings grew well in burned-over soil from a Pinus resinosa stand. Burned organic matter from a red pine forest showed an increase in pH with a burning temperature of 600°C. Primary root growth of red pine seedlings was similarly increased with increasing temperature up to 600°C; at higher temperatures the root length of seedlings did not increase any further.  相似文献   

2.
Predicting plant community responses to changing environmental conditions is a key element of forecasting and mitigating the effects of global change. Disturbance can play an important role in these dynamics, by initiating cycles of secondary succession and generating opportunities for communities of long‐lived organisms to reorganize in alternative configurations. This study used landscape‐scale variations in environmental conditions, stand structure, and disturbance from an extreme fire year in Alaska to examine how these factors affected successional trajectories in boreal forests dominated by black spruce. Because fire intervals in interior Alaska are typically too short to allow relay succession, the initial cohorts of seedlings that recruit after fire largely determine future canopy composition. Consequently, in a dynamically stable landscape, postfire tree seedling composition should resemble that of the prefire forest stands, with little net change in tree composition after fire. Seedling recruitment data from 90 burned stands indicated that postfire establishment of black spruce was strongly linked to environmental conditions and was highest at sites that were moist and had high densities of prefire spruce. Although deciduous broadleaf trees were absent from most prefire stands, deciduous trees recruited from seed at many sites and were most abundant at sites where the fires burned severely, consuming much of the surface organic layer. Comparison of pre‐ and postfire tree composition in the burned stands indicated that the expected trajectory of black spruce self‐replacement was typical only at moist sites that burned with low fire severity. At severely burned sites, deciduous trees dominated the postfire tree seedling community, suggesting these sites will follow alternative, deciduous‐dominated trajectories of succession. Increases in the severity of boreal fires with climate warming may catalyze shifts to an increasingly deciduous‐dominated landscape, substantially altering landscape dynamics and ecosystem services in this part of the boreal forest.  相似文献   

3.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

4.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

5.
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn severity, site moisture and time elapsed since burning in determining the invisibility of black spruce forests. We conducted field surveys for presence of non-native plants at 99 burned black spruce forest sites burned in 2004 in three regions of interior Alaska that spanned a gradient of burn severities and site moisture levels, and a chronosequence of sites in a single region that had burned in 1987, 1994, and 1999. We also conducted a greenhouse experiment where we grew invasive plants in vegetation and soil cores taken from a subset of these sites. In both our field survey and the greenhouse experiment, regional differences in soils and vegetation between burn complexes outweighed local burn severity or site moisture in determining the invasibility of burned black spruce sites. In the greenhouse experiments using cores from the 2004 burns, we found that the invasive focal species grew better in cores with soil and vegetation properties characteristic of low severity burns. Invasive plant growth in the greenhouse was greater in cores from the chronosequence burns with higher soil water holding capacity or lower native vascular biomass. We concluded that there are differences in susceptibility to non-native plant invasions between different regions of boreal Alaska based on native species regeneration. Re-establishment of native ground cover vegetation, including rapidly colonizing bryophytes, appear to offer burned areas a level of resistance to invasive plant establishment.  相似文献   

6.
Picea glehnii seedlings are affected by damping-off fungi in nurseries. The aims of this study were (1) to isolate fungi grown in the seedling rhizosphere in forest soil of P. glehnii, (2) to select fungi that produce antifungal compounds against Pythium vexans, and (3) to examine whether or not selected fungi can protect seedlings from P. vexans. Penicillium frequentans from Picea glehnii seedling roots produced antibiotic penicillic acid. Penicillic acid did not cause significant phytotoxicity to the seedlings. Penicillium frequentans increased the average percentage of surviving seedlings when inoculated together with Pythium vexans, but the increase was not significant. Vigorous mycelial growth of P. frequentans around seedling roots seems to be one of the mechanisms for protection, but the amount of penicillic acid was too low to show antifungal activity in the seedling rhizosphere.  相似文献   

7.
Regional warming has led to increased productivity near the boreal forest margin in Alaska. To date, the effects of warming on seedling recruitment have received little attention, in spite of forecasted forest expansion. Here, we used stand structure and environmental data from 95 white spruce (Picea glauca) plots sampled across a longitudinal gradient in southwest Alaska to explore factors influencing spruce establishment and recruitment near western treeline. We used total counts of live seedlings, saplings, and trees, representing five life stages, to evaluate whether geospatial, climate, and measured plot covariates predicted abundance, using current abundance distributions as a surrogate for climate conditions in the past. We used generalized linear models to test the null hypothesis that conditions favorable for recruitment were similar along the environmental gradient represented by longitude, by exploring relationships between per‐plot counts of each life stage and the covariates hypothesized to affect abundance. We also examined the relationship between growing degree days (GDD) and seedling establishment over a period of three decades using tree‐ring chronologies obtained from cores taken at a subset of our sites (n = 30). Our results indicated that seedling, sapling, and tree abundance were positively correlated with temperature across the study area. The response to longitude was mixed, with earlier life stages (seedlings, saplings) most abundant at the western end of the gradient, and later life stages (trees) most abundant to the east. The differential relationship between longitude and life‐stage abundance suggests a moving front of white spruce establishment through time, driven by changes in environmental conditions near the species’ western range limit. Likewise, we found a positive relationship between periods of seedling establishment and GDD, suggesting that longer summers and/or greater heat accumulation might enhance establishment, consistent with the positive relationship we found between life‐stage abundance and temperature.  相似文献   

8.
Eshel  Amram  Henig-Sever  Nava  Ne'eman  Gidi 《Plant Ecology》2000,148(2):175-182
Most of the area in pine woodlands is occupied by perennial seeders that regenerate from seeds in the first winter after the fire and by annuals. Control of the germination in the regenerating vegetation after wildfire is therefore a primary ecological component of the post-fire succession in this ecosystem. The aim of the study presented here was to determine the distribution of Pinus, Cistus and other plants seeds around burned Pinus halepensis trees, and to measure the conditions related to seed germination in the upper soil layers in the same locations. The study was carried out in a 50-year old planted Pinus halepensis woodland that was burned down by a wildfire in July 1995. The variation of seedbank density was determined by collecting samples under the canopies of burned trees and in a nearby open area. Pine seedbank density decreased and that of Cistus and annuals increased with increasing distance from the burned trunks. Most pine seeds were present in the ash layer while those of the other plants were in the soil. In situ germination experiments showed that seedling density decreased with distance from the burned trunks while the proportion of pines in the seedling population increased. This was a result of seedbank variation and germination inhibition by the high pH conditions caused by the ash. The establishment of sparse pine seedling under the dead tree canopies insured their rapid development without interference by other plants and played a key role in the regeneration and stability of the pine woodland community. The concomitant mass germination of the perennial seeders in the rest of the area prevented invasion by annuals.  相似文献   

9.
Established vegetation can facilitate the ectomycorrhizal infection of seedlings, but it is not known whether this interaction is limited by the phylogenetic relatedness of trees and seedlings. We use a series of bioassay experiments to test whether soil modification by different ectomycorrhizal tree species causes different levels of seedling infection, whether the extent of seedling infection is a function of the relatedness of tree and seedling, and whether the effect of trees on seedlings is mediated by biotic or abiotic soil factors. We found that soils from under different tree species do vary in their mycorrhizal infectiveness. However, this variation is not related to the genetic relatedness of trees and seedlings but instead, appears to be an attribute of the overstory species, irrespective of seedling species, mediated through a suite of humus- and base-cation-related abiotic effects on soils. Modification of abiotic soil properties by overstory trees should be considered as an important factor in the effect of different overstory trees on the extent of seedling mycorrhizal infection.  相似文献   

10.
A greenhouse experiment was performed to evaluate the effect of Norway spruce (Picea abies (L.) Karst.) seedlings on net nutrient availability in five different growing media containing F- or H-layer and mineral soil originating from a haplic podzol in northern Sweden. The initial total amounts of eight nutrient elements (N, K, P, Ca, Mg, Mn, Fe, Zn) and exchangeable amounts of the same elements were analyzed in pots with or without spruce seedlings. In the planted pots seedling nutrient uptake was also estimated. After 26 weeks, higher net nutrient availability with seedlings was found in 25 out of the 40 (62%) growing media and nutrient element combinations. A positive seedling effect on net nutrient availability might be explained by rhizodeposition stimulating the soil microorganism activity and accelerating the weathering of minerals or by seedling roots promoting the nutrient providing processes through changes in soil chemical and physical properties. Nitrogen availability was primarily affected by what part of the forest floor the growing medium contained although the positive response to seedling presence was apparent. The positive net availability response of P, Ca, Mg, Mn, Fe and Zn to seedling presence was on the other hand relatively strong. In the case of P, K, and Zn the growing medium composition (if the F- and H-layer was pure or mixed with mineral soil) was also an important factor for the estimated net availability. Pure F-and H-layer provided greater P- and K-availability while the availability of Zn increased when mineral soil was added. The influence of growing plants ought to be considered when soil samples are used for assessing the nutrient availability.  相似文献   

11.
Pollen analyses of sediment cores from two small lakes within the boreal forest in the central Scandes Mountains help to elucidate the Holocene forest dynamics of the region. Analyses of pore/pollen grain diameter ratios of Alnus grains indicate the early Holocene presence of Alnus glutinosa in the study area. The results are discussed in conjunction with available pollen records to evaluate the importance of thermophilous trees during the early Holocene and to deduce the regional spread of Picea abies. Corylus avellana, Alnus glutinosa and Ulmus glabra were probably common constituents of the early Holocene forest. Tilia cordata may have occurred there as a rare tree. Pollen stratigraphies from the region do not indicate the occurrence of Quercus robur. The regional spread of Picea abies can be separated into two phases: a mid-Holocene establishment or first expansion of small outpost populations and a late-Holocene population expansion. The mid-Holocene shift in vegetation composition may have been caused by changes in the westerly airflow.  相似文献   

12.
We used a simulation model of forest dynamics to examine the ecological significance of the complex interactions among site conditions, tree growth, and the development of a thick forest floor moss layer found in many boreal forests. To examine the effect of site conditions on moss growth and forest dynamics, we simulated the dynamics of several different forest sites in the uplands of interior Alaska. Then we used a cold, wet permafrost site to examine the ecological consequences of direct moss and tree interactions. Our analyses revealed a tightly coupled system in which forest succession was highly sensitive to the interactions among site conditions, mosses, and trees. The effect of mosses on the soil thermal regime was a particularly important feedback. Direct interactions between mosses and trees that affected the development of a thick forest floor layer were also important. In particular, shading of moss by trees, reduced tree regeneration on moss-covered soils, and reduced moss growth with open forest canopies were also important determinants of forest succession. These complex feedbacks ensure that an ecosystem approach is needed to understand the ecology of boreal forests.  相似文献   

13.
为了充分利用米槁林下空间,从化感效应的角度研究人工米槁林下土壤水浸提液对绿壳砂生长状况的影响,探索米槁与绿壳砂建立间作经营系统的可能性。以绿壳砂为受体,米槁根际土壤与林间土壤水浸提液为供试液,设置6个浓度0、0.5、1、5、10、50 mg/mL的水浸提液处理绿壳砂,对绿壳砂种子萌发和幼苗生理生化指标进行测定,以此探讨米槁根际土壤与林间土壤水浸提液对绿壳砂生长的影响。结果表明:米槁两种土壤水浸提液对绿壳砂种子的萌发大体上呈现低浓度促进高浓度抑制的浓度效应,但随着浓度的变化,差异不显著;米槁林间土壤水浸提液对绿壳砂幼苗的总生物量及苗高都表现出显著的促进作用,呈先增加后缓慢减小的趋势,根际土壤水浸提液则在高浓度时表现出抑制作用。从化感效应综合指数看出,2种水浸提液对可溶性蛋白质含量、游离脯氨酸(Pro)含量、土壤脲酶(S-UE)活性表现为抑制作用,其余都为促进作用,且林间土壤的促进效果强于根际土壤。应用GC-MS从米槁根际土壤与林间土壤中分别鉴定出18种化合物,虽含有酚酸和烷烃类等化感物质,但在一定浓度范围内,对绿壳砂种子萌发、幼苗生长没有明显的抑制作用,且在米槁林土水浸提液处理下表现出更强的适应性。因此,在米槁林下套种绿壳砂时采取幼苗移栽法,构建米槁-绿壳砂林药间作经营体系具有一定可行性。  相似文献   

14.
G. Ne'eman  H. Lahav  I. Izhaki 《Oecologia》1992,91(3):365-370
Summary The spatial distribution of seedlings of the dominant perennial plant species (Pinus halepensis, Cistus salviifolius, Rhus coriaria) and may annual species was studied after a wild fire in an eastern Mediterranean pine forest. The spatial distribution of all seedlings is affected by the location of the old burned pine trees. Seedling density of Pinus and Cistus is higher at a distance from the burned pine canopy and lower near the burned pine trunk. It is also higher beneath small burned pine trees than under big ones. Rhus seedling density is higher under big burned pine trees and also near the burned trunks. Seedlings of Pinus, Cistus and Rhus growing under the burned canopy of big pine trees tend to be taller than seedlings under small ones or outside the burned canopy. Most annual species germinate and establish themselves outside the burned canopies, and only a few annual species are found beneath them. It is suggested that variation in the heat of the fire, in the amount of ash between burned pine trees of different sizes, and in the distance from the burned canopy are responsible for the observed pattern of seedling distribution. The possible ecological significance of the spatial pattern of seedlings distribution and their differential growth rate are discussed.  相似文献   

15.
In Swedish boreal forests, areas dominated by the dwarf shrub Empetrum hermaphroditum Hagerup are known for their poor regeneration of trees and one of the causes of this poor regeneration has been attributed to allelopathy (i.e. chemical interferences) by E. hermaphroditum. Fire-produced charcoal is suggested to play an important role in rejuvenating those ecosystems by adsorbing allelopathic compounds, such as phenols, released by E. hermaphroditum. In this study, we firstly investigated whether the adsorption capacity of charcoal of different plant species varies according to the wood anatomical structures of these, and secondly we tried to relate the adsorption capacity to wood anatomical structure. Charcoal was produced from eight boreal and one temperate woody plant species and the adsorption capacity of charcoal was tested by bioassays technique. Seed germination was used as a measurement of the ability of charcoal to adsorb allelochemicals. The charcoal porosity was estimated and the pore size distribution was then calculated in order to relate the wood anatomical features to the adsorption capacity. The results showed that the adsorption capacity of charcoal was significantly different between plant species and that deciduous trees had a significantly higher adsorption capacity than conifers and ericaceous species. The presence of macro-pores rather than a high porosity appears to be the most important for the adsorption capacity. These results suggest that fire-produced charcoal has different ability to adsorb phenols in boreal forest soil, and therefore may have differing effects on the germination of seeds of establishing tree seedlings.  相似文献   

16.
Kennedy PG  Sousa WP 《Oecologia》2006,148(3):464-474
Competition and facilitation are both considered major factors affecting the structure of plant assemblages, yet few studies have quantified positive, negative, and net effects simultaneously. In this study, we investigated the positive, negative, and net effects of tree saplings on the encroachment of two tree species, Douglas fir (Pseudotsuga menziesii) and tanoak (Lithocarpus densiflora), into a coastal California grassland. The study involved three components: sampling the spatial distributions of P. menziesii and L. densiflora in the grasslands, a field experiment examining seedling survival in different grassland environments, and a greenhouse experiment examining the effects of soil moisture on early seedling performance. The field experiment was conducted over a 2-year period, using Pseudotsuga in 2002 and both species in 2003. Seedlings were separated into four treatment groups: those planted in open grassland, in shaded grassland, under artificial (plastic) conifer saplings, and under natural Pseudotsuga saplings. Air temperature, relative humidity, soil moisture, incident radiation levels and fog water inputs were measured for each treatment group in 2003. In the greenhouse experiment, Pseudotsuga and Lithocarpus seedlings were grown for 13 weeks in watering treatments simulating the summer soil moisture conditions of the open grasslands and under Pseudotsuga saplings. Surveys of naturally established seedlings found that Lithocarpus occurred only under Pseudotsuga saplings, while most Pseudotsuga seedlings were located near but not directly under conspecific saplings. In the field experiment, positive effects of tree saplings were much larger than negative effects, resulting in strong net facilitation of seedling establishment. Survival for both species was always higher under the plastic and live trees than in the open or shade plots. The primary mechanism facilitating seedling survival appeared to be increased soil moisture caused by input of fog precipitation coupled with reduced microsite evaporation. The greenhouse experiment further showed that soil moisture strongly affected seedling performance, with both species having much higher photosynthetic rates in the higher moisture treatment. In the lower moisture treatment, Pseudotsuga seedlings had higher photosynthetic rates and stomatal conductance than Lithocarpus, suggesting they may be able to better tolerate the environmental conditions found in the open grasslands. Our combined results suggest that rate and patterning of woody plant encroachment can be strongly influenced by facilitation and that fog precipitation may play a key role in plant interactions.  相似文献   

17.
H.-J. Yin  H. He 《Plant biosystems》2013,147(3):314-322
Abstract

Dragon spruce (Picea asperata Mast.) is widely planted on clear-cuts from natural subalpine coniferous forests in western Sichuan. To assess the natural regeneration potential of this species in spruce plantations of different ages, field studies on the seed rain, seed bank, and seedling recruitment were conducted in 20-year, 30-year, and 60-year plantations, and in a retained natural forest ca. 150 years old for comparison. Moreover, a series of temperature and light regimes were also designed in March 2003 to test germination/dormancy responses of the P. asperata seeds to different conditions. In the plantations considered, both the densities of seed rain and soil seed bank increased with increasing stand age, whereas they were both low beneath the natural forest partially due to low adult density of P. asperata adult trees. P. asperata has a transient seed bank, and ca. 60% of seeds were found in the litter layer. Seed decay and seed predation were the two most important factors affecting soil seed bank dynamics, which caused a number of seed losses from the soil. Only a small fraction germinated and produced seedlings, and the indices of the losses from the seed bank via germination in the 30-year plantation, 60-year plantation and natural forest were 4.75, 5.10, and 2.80%, respectively. High seedling mortality was observed after seedling emergence, and most of the germinated seedlings died out within one growing season. The P. asperata seeds showed a high percent germination and no significant differences under most light and temperature regimes except for full sunlight or temperature below 5°C. In conclusion, despite a substantial number of seed produced, the high depletion of soil seed, the low seedling output, and high seedling mortality may obscure the natural regeneration potential of this tree species.  相似文献   

18.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

19.
Regeneration is known to be limited at many temperate tree lines, but very little data is available on the impacts of altitude and anthropogenic disturbance on regeneration patterns along tropical tree lines. The study focused on the reproductive traits of two Polylepis species in the Páramo de Papallacta in Ecuador along an altitudinal gradient, and involved different intensities of cattle trampling within subsequent altitudinal ranges. We analyzed flowering, fruit set, seed viability, germination, and seedling establishment as well as stand structure of Polylepis incana and P. pauta. The numbers of P. incana inflorescences and seedlings per m2 showed a marginally significant decrease with increasing altitude. Mean tree height was significantly lower at higher altitudes, while stem number increased. The number of P. pauta inflorescences also decreased significantly upslope. In both forest types, trampling was found to have a positive impact on seedling abundance, presumably due to the removal of the litter layer. Thus, there was no evidence of negative effects of moderate cattle grazing on both tree line species. However, sapling establishment was minimal inside the forest stands at all altitudes and grazing levels, and we consequently observed a low proportion of narrow stems within all investigated forests. Our results show that, along with vegetative growth limitations of adult trees, important regeneration traits such as seedling and inflorescence numbers are also influenced by altitude, which might contribute to the formation of the upper tree line. Nevertheless, recruitment in the forest interior was low overall indicating that further factors, such as light conditions, affect regeneration of the studied species.  相似文献   

20.
陈龙斌  孙昆  张旭  孙洪刚  姜景民 《生态学报》2023,43(19):8035-8046
探究林隙对不同需光性树种早期生长特征和功能性状的影响,对揭示林隙微生境影响次生林内幼苗更新机制具有重要意义。以亚热带次生林中耐荫常绿树种香樟和阳性落叶树种枫香幼苗为试验对象,研究大林隙(D/H介于1.5—2.0)、中林隙(D/H介于1.0—1.5)和小林隙(D/H介于0.5—1.0)对不同需光树种幼苗早期(1—3年生)生长特征和功能性状的影响。结果表明:(1)林隙大小对两种幼苗的生长均有显著影响。其中,中林隙可显著促进香樟2—3年生幼苗的生长,大林隙对枫香1—3年生幼苗的生长均具有显著促进作用。(2)对林隙环境因子与幼苗功能性状的关系进行冗余分析表明,香樟幼苗功能性状的变化与林隙土壤有机质含量、水解性氮含量、酸碱度和有效磷含量密切相关,而枫香幼苗功能性状则主要受林隙土壤酸碱度、有机质含量、水解性氮含量、土壤含水率、冠层透光率和土壤有效磷含量的影响。(3)维持较高的根重比、细根比根长、叶碳氮比和叶碳磷比是幼苗应对林隙环境影响的重要生理生态调节机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号