首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of CO to ascorbate-reduced Pseudomonas cytochrome oxidase was investigated by static-titration, stopped-flow and flash-photolytic techniques. Static-titration data indicated that the binding process was non-stoicheiometric, with a Hill number of 1.44. Stopped-flow kinetics obtained on the binding of CO to reduced Pseudomonas cytochrome oxidase were biphasic in form; the faster rate exhibited a linear dependence on CO concentration with a second-order rate constant of 2 X 10(4) M-1-s-1, whereas the slower reaction rapidly reached a pseudo-first-order rate limit at approx. 1s-1. The relative proportions of the two phases observed in stopped-flow experiments also showed a dependency on CO concentration, the slower phase increasing as the CO concentration decreased. The kinetics of CO recombination after flash-photolytic dissociation of the reduced Pseudomonas cytochrome oxidase-CO complex were also biphasic in character, both phases showing a linear pseudo-first-order rate dependence on CO concentration. The second-order rate constants were determined as 3.6 X 10(4)M-1-s-1 and 1.6 X 10(4)M-1-s-1 respectively. Again the relative proportions of the two phases varied with CO concentration, the slower phase predominating at low CO concentrations. CO dissociation from the enzyme-CO complex measured in the presence of O2 and NO indicated the presence of two rates, of the order of 0.03s-1 and 0.15s-1. When sodium dithionite was used as a reducing agent for the Pseudomonas cytochrome oxidase, the CO-combination kinetics observed by both stopped flow and flash photolysis were extremely complex and not able to be simply analysed.  相似文献   

2.
In stopped-flow experiments in which oxidized cytochrome c oxidase was mixed with ferrocytochrome c in the presence of a range of oxygen concentrations and in the absence and presence of cyanide, a fast phase, reflecting a rapid approach to an equilibrium, was observed. Within this phase, one or two molecules of ferrocytochrome were oxidized per haem group of cytochrome a, depending on the concentration of ferrocytochrome c used. The reasons for this are discussed in terms of a mechanism in which all electrons enter through cytochrome a, which, in turn, is in rapid equilibrium with a second site, identified with 'visible' copper (830 nm-absorbing) Cud (Beinert et al., 1971). The value of the bimolecular rate constant for the reaction between cytochromes c2+ and a3+ was between 10(6) and 10(7) M(-1)-S(-1); some variability from preparation to preparation was observed. At high ferrocytochrome c concentrations, the initial reaction of cytochrome c2+ with cytochrome a3+ could be isolated from the reaction involving the 'visible' copper and the stoicheiometry was found to approach one molecule of cytochrome c2+ oxidized for each molecule of cytochrome a3+ reduced. At low ferrocytochrome c concentrations, however, both sites (i.e. cytochrome a and Cud) were reduced simultaneously and the stoicheiometry of the initial reaction was closer to two molecules of cytochrome c2+ oxidized per molecule of cytochrome a reduced. The bleaching of the 830 nm band lagged behind or was simultaneous with the formation of the 605 nm band and does not depend on the cytochrome c concentration, whereas the extinction at the steady-state does. The time-course of the return of the 830 nm-absorbing species is much faster than the bleaching of the 605 nm-absorbing component, and parallels that of the turnover phase of cytochrome c2+ oxidation. Additions of cyanide to the oxidase preparations had no effect on the observed stoicheiometry or kinetics of the reduction of cytochrome a and 'visible' copper, but inhibited electron transfer to the other two sites, cytochrome a3 and the undetectable copper, Cuu.  相似文献   

3.
A stopped-flow investigation of the electron-transfer reaction between oxidized azurin and reduced Pseudomonas aeruginosa cytochrome c-551 oxidase and between reduced azurin and oxidized Ps. aeruginosa cytochrome c-551 oxidase was performed. Electrons leave and enter the oxidase molecule via its haem c component, with the oxidation and reduction of the haem d1 occurring by internal electron transfer. The reaction mechanism in both directions is complex. In the direction of oxidase oxidation, two phases assigned on the basis of difference spectra to haem c proceed with rate constants of 3.2 X 10(5)M-1-S-1 and 2.0 X 10(4)M-1-S-1, whereas the haem d1 oxidation occurs at 0.35 +/- 0.1S-1. Addition of CO to the reduced enzyme profoundly modifies the rate of haem c oxidation, with the faster process tending towards a rate limit of 200S-1. Reduction of the oxidase was similarly complex, with a fast haem c phase tending to a rate limit of 120S-1, and a slower phase with a second-order rate of 1.5 X 10(4)M-1-S-1; the internal transfer rate in this direction was o.25 +/- 0.1S-1. These results have been applied to a kinetic model originally developed from temperature-jump studies.  相似文献   

4.
The formylation of the ring nitrogen atom of the tryptophan residue in cytochrome c was carried out and consequent changes in the kinetic properties of the protein were investigated. The reduction of formylated cytochrome c by Cr2+ was studied by stopped-flow techniques. At pH 6.5 the reduction process shows the presence of two phases. One phase (k = 4 X 10(4) M-1-s-1) is dependent on Cr2+ concentration and one phase (k = 5.0 s-1) is not. A study of the temperature dependence of the two phases yields values for their activation energies of 38.6kJ-mol-1 and 42.4kJ-mol-1 respectively. The reaction of the reduced formylated cytochrome c with CO was followed by means of both stopped-flow techniques and flash photolysis. The combination with CO at pH 6.8 measured in stopped-flow experiments shows two phases, both dependent on the concentration of CO (k1 = 1.8 X 10(2) M-1-s-1). If CO was dissociated from the protein by photolysis and then allowed to recombine with it, it was found to do so in a simple manner, at a rate which depended on the concentration of CO (k = 1.9 X 10(2) M-1-s-1). A tentative model which can accommodate these findings is proposed. The reaction of the oxidized form of formylated cytochrome c with NO was followed by means of stopped-flow techniques. The reaction was found to be biphasic with one phase dependent on the concentration of NO (k = 2.8 X 10(3) M-1-s-1) and one phase (k = 0.2x-1) independent of the concentration of NO. This behaviour is compared with that of the native molecule. A comparison of these kinetic observations with those on other tryptophan-specific modifications leads to the conclusion that the main alteration in kinetic properties is due, not to the nature of the modifying group, but rather to the disruption of the normal environment of the haem.  相似文献   

5.
Reactions of mercaptans with cytochrome c oxidase and cytochrome c   总被引:2,自引:0,他引:2  
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 microM, respectively. 2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme. 3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M-1 . s-1 and a dissociation constant Kd of 3.9 mM. 4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M-1 . s-1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes. 5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome alpha 3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

6.
The reaction of a reduced cytochrome oxidase system consisting of beef heart cytochrome oxidase, cytochrome c, and ascorbate with molecular oxygen was kinetically and thermodynamically investigated using a stopped-flow, rapid wavelength-scanning technique. Processes for oxidation of ferrocytochrome a, bound ferrocytochrome c, and free ferrocytochrome c have been identified, and their rate constants have been determined. Values of the activation energy for these reactions indicate that the oxidation of bound ferrocytochrome c is a simple chemical electron-transfer process and that oxidations of ferrocytochrome a and free ferrocytochrome c are complex processes involving changes in protein conformation.  相似文献   

7.
1) Cells of Saccharomyces cerevisiae have been analysed by single and double-bean spectroscopy. Evidence is given for two components of cytochrome c oxidase in the alpha-region of their absorption spectrum. A rapidly reduceable component with a maximum at 600 nm and a slowly reduceable component with a maximum at 604 nm contribute about equal amounts to the total alpha-absorption of cytochrome c oxidase. 2) The component absorbing at 600 nm was identified as the high-potential component with a redox potential of 340 - 355mV, and the 604-nm component as the low-potential component of cytochrome c oxidase with redox potential of 180 - 190 mV. 3) Both components can be characterized by analysing the reduction kinetics in the presence of carbon monoxide. In the presence of saturating concentrations of carbon monoxide, an oxygen pulse leads to a rapid oxidation and subsequent reduction of cytochrome c oxidase, but the rapid reduction phase at 600 nm completely disappears, demonstrating its identity with cytochrome a3, which, being liganded by carbon monoxide in its reduced state, cannot react any more. The component which becomes oxidized and later reduced in the presence of carbon monoxide -- by definition cytochrome a -- has an absorption maximum at 604 nm. 4) The total extinction change at 604 nm in the presence of carbon monoxide is nearly as high as in its absence, but the reduction occurs in two phases and only the second phase, which contributes 50 - 60% to the total absorbance, corresponds in redox potential and kinetic properties to cytochrome a. Because the redox potential of the first reduction phase is very close to that of the low-potential copper atom of cytochrome c oxidase, it is concluded that the apparent increase in the extinction coefficient of cytochrome a in the presence of carbon monoxide is the result of a strong interaction between the ligand fields of cytochrome a and copper, induced by the binding of carbon monoxide to reduced cytochrome a3.  相似文献   

8.
1. Kinetic studies have been performed with beef-heart cytochrome c oxidase, with the enzyme either in its oxidized, resting state or pretreated anaerobically with different amounts of reduced cytochrome c. The techniques used for the study have been stopped-flow spectrophotometry and electron paramagnetic resonance (EPR) spectroscopy. 2. The results show that the one-electron equivalent-reduced enzyme rapidly oxidizes one further equivalent of aerobically or anaerobically added ferrocytochrome c, with a rate constant of 5 . 10(6) M-1 . s-1. 3. When an excess of ferrocytochrome c in the presence of oxygen is added to the one-electron-reduced enzyme, the same turnover rate is obtained as in experiments with the resting enzyme. 4. The one-electron equivalent-enzyme reacts with CO with a rate constant of 4 . 10(4) M-1 . s-1 to yield approx. 35% of the CO compound as compared with the reaction between the fully reduced enzyme and CO. 5. It is shown that on reduction the enzyme is converted into an active form, but it is concluded that the enzyme does not have to be fully reduced before it is catalytically active.  相似文献   

9.
1. The dependences of the reduction of ferricytochrome c-555 in the reaction center-cytochrome c complex on the redox potential and pH were investigated using N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), ferrocyanide, and reduced 2,5-dimethyl-p-quinone as electron donors. 2. In the reduction of cytochrome c-555 by TMPD, the unprotonated form was the exclusive electron donor to the cytochrome with a second-order rate constant of 1.0 X 10(5) M-1.s-1. 3. Ferrocyanide reduced cytochrome c-555 slowly with a rate constant of 7.8 X 10(3) M-1.s-1 at infinite salt concentration. The value of -5.2 X 10(-4) elementary charge/A2 was estimated as the surface charge density in the vicinity of cytochrome c-555 by analyzing the salt effect on the cytochrome reduction using the Gouy-Chapman theory. 4. The characteristics of the dependences of the reduction of cytochrome c-555 by reduced 2,5-dimethyl-p-quinone on the redox potential and pH were well explained by the redox potential and pH dependences of the formation of the semiquinone. In the neutral-to-alkaline pH range the anionic semiquinone was the main electron-donating species with a second-order rate constant of 6.0 X 10(7) m-1.s-1.  相似文献   

10.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

11.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

12.
R A Copeland  P A Smith  S I Chan 《Biochemistry》1987,26(23):7311-7316
When cytochrome c oxidase is reduced, it undergoes a conformational change that shifts its tryptophan fluorescence maximum from 329 to 345 nm. Studies of ligand-bound, mixed-valence forms of the enzyme show that this conformational change is dependent on the redox state of the low-potential metal centers, cytochrome a and CuA. The intrinsic fluorescence of oxidized cytochrome c oxidase is not effectively quenched by Cs+; however, marked quenching is observed for the reduced enzyme with a Stern-Volmer constant of 0.69. These observations, together with the significant red shift of the emission maximum, suggest that the emitting tryptophan residues are becoming more solvent accessible in the reduced enzyme. Stopped-flow spectra show that this conformational transition occurs rapidly upon reduction of the low-potential sites with a pseudo-first-order rate constant of 4.07 +/- 0.40 s-1. The conformational change monitored by tryptophan fluorescence is suggested to be related to the previously proposed "open-closed" transition of cytochrome c oxidase. Reductive titration of the cyanide-inhibited enzyme with ferrocytochrome c shows a nonlinear response of the fluorescence shift to added electron equivalents. A theoretical treatment of the reduction of the two interacting sites of the cyanide-inhibited enzyme has been developed that gives the population of each redox state as a function of the total number of electrons accepted by the enzyme. This treatment depends on two parameters: the difference in redox potential between the two metals and the redox interaction between the redox centers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Horse heart cytochrome c was covalently bound to Sepharose 4B and its redox properties were measured under various experimental conditions. The equilibrium constant for the electron exchange between the oxidized and the reduced form of cytochrome c when one of the two forms was in the semi-solid state and the other one in solution was close to 1. Matrix-bound ferrocytochrome c is very stable to autoxidation and is not oxidized by O2 even in the presence of mammalian cytochrome oxidase. Oxidation occurs if catalytic amounts of soluble cytochrome c are added to the reaction mixture. The rate of oxidation of matrix-bound ferrocytochrome c in the presence of cytochrome oxidase and catalytic amounts of soluble cytochrome c may be correlated with the rate of electron transfer between soluble and matrix-bound cytochrome c. This rate is more than two orders of magnitude lower than that reported for the homonuclear (between identical species) electron transfer in solution.  相似文献   

14.
The oxidation-reduction properties of free cytochrome b2 isolated by controlled proteolysis from flavocytochrome b2, i.e. the flavodehydrogenase-bound cytochrome b2, were investigated by using stopped-flow spectrophotometry. The rapid kinetics of the reduction of cytochrome b2 by flavocytochrome b2 in the presence of L-lactate are reported. The self-exchange rate constant between reduced cytochrome b2 bound to the flavodehydrogenase and free cytochrome b2 was determined to be 10(5) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. The specific electron-transfer reaction between reduced cytochrome b2 and cytochrome c was also studied, giving an apparent second-order rate constant of 10(7) M-1 X S-1 at 5 degrees C, I 0.2 and pH 7.0. This electron-exchange rate is slightly modulated by ionic strength, following the Debye-Hückel relationship with a charge factor Z1Z2 = -1.9. Comparison of these data with those for the reduction of cytochrome c by flavodehydrogenase-bound cytochrome b2 [Capeillère-Blandin (1982) Eur. J. Biochem. 128, 533-542] leads to the conclusion that the intramolecular electron exchange between haem b2 and haem c within the reaction complex occurs at a rate very similar to that determined experimentally in presence of the flavodehydrogenase domain. The low reaction rate observed with free cytochrome b2 is ascribed to the low stability of the reaction complex formed between free cytochrome b2 and cytochrome c.  相似文献   

15.
The electron-transfer reaction between ferrocytochrome c and ferricyanide has been studied by the method of photoexcitation. The observed transfer rate shows saturation behaviour at high ferricyanide concentration. Data analysis indicates that there are two binding sites of vastly different affinities at which electron transfer occurs. The binding constant for the strong binding site decreases from 1600 M-1 to 80 M-1 as the ionic strength increases from 15 mM to 140 mM. At 20 degrees C, the intramolecular electron-transfer rate for this site is 4.65 X 10(4) s-1, which gives an electron-transfer distance of approx. 9.7 A according to Hopfield's model.  相似文献   

16.
The redox reaction between cytochrome c-551 and its oxidase from the respiratory chain of pseudomonas aeruginosa was studied by rapid-mixing techniques at both pH7 and 9.1. The electron transfer in the direction of cytochrome c-551 reduction, starting with the oxidase in the reduced and CO-bound form, is monophasic, and the governing bimolecular rate constants are 1.3(+/- 0.2) x 10(7) M-1 . s-1 at pH 9.1 and 4 (+/- 1) x 10(6) M-1 . s-1 at pH 7.0. In the opposite direction, i.e. mixing the oxidized oxidase with the reduced cytochrome c-551 in the absence of O2, both a lower absorbance change and a more complex kinetic pattern were observed. With oxidized azurin instead of oxidized cytochrome c-551 the oxidation of the c haem in the CO-bound oxidase is also monophasic, and the second-order rate constant is 2 (+/- 0.7) x 10(6) M-1 . s-1 at pH 9.1. The redox potential of the c haem in the oxidase, as obtained from kinetic titrations of the completely oxidized enzyme with reduced azurin as the variable substrate, is 288 mV at pH 7.0 and 255 mV at pH 9.1. This is in contrast with the very high affinity observed in similar titrations performed with both oxidized azurin and oxidized cytochrome c-551 starting from the CO derivative of the reduced oxidase. It is concluded that: (i) azurin and cytochrome c-551 are not equally efficient in vitro as reducing substrates of the oxidase in the respiratory chain of Pseudomonas aeruginosa; (ii) CO ligation to the d1 haem in the oxidase induces a large decrease (at least 80 mV) in the redox potential of the c-haem moiety.  相似文献   

17.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2.10(4) M-1.s-1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s-1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM-131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs approximately 0.02 s) entry of a third electron.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

19.
1. Hydrated electrons, produced by pulse radiolysis react with porphyrin cytochrome c with a bimolecular rate constant of 3-10(10) M-1 S-1 at 21 degrees C and pH 7.4. 2. After the reduction step an absorbance change with a half-life of 5 microns is observed with the spectral range of 430-470 nm. A relatively stable intermediate then decays with a half-life of 15 s. 3. The spectrum of the intermediate observed 50 microns after the generation of hydrated electrons shows a broad absorption band between 600 and 700 nm and a peak at 408 nm. The spectrum is attributed to the protonated form of an initially produced porphyrin anion radical. 4. Reduced porphyrin cytochrome c reacts with ferricytochrome c with a bimolecular constant of 2-10(5) M-1- S-1 in 2 mM phosphate pH 7.4, at 21 degrees C and of 2 - 10(6) M-1-S-1 under the same conditions but at 1 M ionic strength. It is proposed that electron transfer in an analogous exchange reaction between ferrocytochrome c and ferricytochrome c occurs via the exposed part of the haem.  相似文献   

20.
1. The superoxide anion radical (O2-) reacts with ferricytochrome c to form ferrocytochrome c. No intermediate complexes are observable. No reaction could be detected between O2- and ferrocytochrome c. 2. At 20 degrees C the rate constant for the reaction at pH 4.7 to 6.7 is 1.4-10(6) M-1. S -1 and as the pH increases above 6.7 the rate constant steadily decreases. The dependence on pH is the same for tuna heart and horse heart cytochrome c. No reaction could be demonstrated between O2- and the form of cytochrome c which exists above pH approximately 9.2. The dependence of the rate constant on pH can be explained if cytochrome c has pKs of 7.45 and 9.2, and O2- reacts with the form present below pH 7.45 with k = 1.4-10(6) M-1 - S-1, the form above pH 7.45 with k = 3.0- 10(5) M-1 - S-1, and the form present above pH 9.2 with k = 0. 3. The reaction has an activation energy of 20 kJ mol-1 and an enthalpy of activation at 25 degrees C of 18 kJ mol-1 both above and below pH 7.45. It is suggested that O2- may reduce cytochrome c through a track composed of aromatic amino acids, and that little protein rearrangement is required for the formation of the activated complex. 4. No reduction of ferricytochrome c by HO2 radicals could be demonstrated at pH 1.2-6.2 but at pH 5.3, HO2 radicals oxidize ferrocytochrome c with a rate constant of about 5-10(5)-5-10(6) M-1 - S-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号