首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sites of synthesis of proteins and their subsequent migration in rat liver have been studied during a 75 min period after labeling of liver-slice proteins by exposure to leucine-H3 for 2 min. Incorporation of the label into protein began after 1 min and was maximal by 4 min. Electron microscopic radioautography showed that synthesis of proteins in hepatocytes occurs mainly on ribosomes, particularly those in rough endoplasmic reticulum and, to some extent, in nuclei and mitochondria. Most of the newly formed proteins leave the endoplasmic reticulum in the course of 40 min, and concurrently labeled proteins appear in Golgi bodies, smooth membranes, microbodies, and lysosomes. A likely pathway for the secretion of some or all plasma proteins is from typical rough endoplasmic reticulum to a zone of reticulum which is partially coated with ribosomes, to the Golgi apparatus, and thence to the cell periphery. The formation of protein by reticuloendothelial cells was measured and found to be about 5% of the total protein formed by the liver.  相似文献   

2.
The incorporation of 3H-glucosamine, 3H-choline and 14C-fucose into subcellular fractions of MPC-11 cells was studied. After a 20 min period of labelling with both 3H-glucosamine and 3H-choline, greatest incorporation was observed in nuclear-associated endoplasmic reticulum (NER). 14C-fucose, however, was incorporated to a greater extent in endoplasmic reticulum (ER) membranes. Pulse-chase experiments with 3H-glucosamine showed a loss of radioactivity from NER and a simultaneous increase in the ER fraction. In comparison to NER, ER membranes were poorly labeled with 3H-glucosamine after a 20 min pulse. Following a 2 h incubation there was a 12 fold increase in radioactivity in ER membranes in comparison to a 1.2 fold increase in NER. There were no individual differences between subfractions of ER membranes with respect to 3H-glucosamine content after the pulse, or following the 2 h incubation. The results indicate that the NER is a major, early site of the synthesis of 3H-glucosamine labeled membrane glycoproteins, and that these proteins migrate into other ER membranes early after their synthesis.  相似文献   

3.
Summary Rat liver mitochondria were fractionated into inner and outer membrane components at various times after the intravenous injection of14C-leucine or14C-glycerol. The time curves of protein and lecithin labeling were similar in the intact mitochondria, the outer membrane fraction, and the inner membrane fraction. In rat liver slices also, the kinetics of3H-phenylalanine incorporation into mitochondrial KCl-insoluble proteins was identical to that of14C-glycerol incorporation into mitochondrial lecithin. These results suggest a simultaneous assembly of protein and lecithin during membrane biogenesisThe proteins and lecithin of the outer membrane were maximally labeledin vivo within 5 min after injection of the radioactive precursors, whereas the insoluble proteins and lecithin of the inner membrane reached a maximum specific acitivity 10 min after injection.Phospholipid incorporation into mitochondria of rat liver slices was not affected when protein synthesis was blocked by cycloheximide, puromycin, or actinomycin D. The injection of cycloheximide 3 to 30 min prior to14C-choline did not affect thein vivo incorporation of lecithin into the mitochondrial inner or outer membranes; however treatment with the drug for 60 min prior to14C-choline resulted in a decrease in lecithin labeling. These results suggest that phospholipid incorporation into membranes may be regulated by the amount of newly synthesized protein available.When mitochondria and microsomes containing labeled phospholipids were incubated with the opposite unlabeled fractionin vitro, a rapid exchange of phospholipid between the microsomes and the outer membrane occurred. A slight exchange with the inner membrane was observed.  相似文献   

4.
5.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

6.
Abstract— Synthesis of phosphatidylcholine, phosphatidylinositol and palmityl carnitine in synaptosomes isolated from rat brain was investigated and compared with the synthesis of these compounds in microsomes and mitochondria. Electron microscopic and marker enzyme studies showed the contaminants in the synaptosomal preparation to consist of a few microsomes and almost no free mitochondria. In synaptosomes, addition of 1,2-diglyceride exerted no effect on the incorporation of [14C]choline into phosphatidylcholine or on the incorporation of [3H]myo-inositol into phosphatidylinositol, but it stimulated the incorporation of CDP[1,2-14C]choline into phosphatidylcholine by more than 50 per cent. The incorporation of the latter in intact synaptosomes, lysed synaptosomes and purified mitochondria was 15-6, 27 and 9-9 per cent, respectively, of that in the microsomes. The incorporation of [3H]myo-inositol into the phosphatidylinositol of synaptosomes and purified mitochondria was 15-8 and 11-1 per cent, respectively, of that in the microsomes. Maximal incorporation of [3H]myo-inositol occurred at pH 7–5 in a medium containing Mg2+ and CTP; it was linear with time and protein concentration and was inhibited by 1 mM Ca2 + but unaffected by the presence of ATP. This incorporation of myo-inositol appeared to occur through the reversal of the CDP-diglyceride: inositol transferase reaction. The demonstration of carnitine palmityl transferase in synaptosomes indicated that, as in mitochondrial and erythrocyte membranes, fatty acids can be transported across the synaptosomal membrane. In contrast to mitochondria where maximal incorporation of [14C]carnitine into palmityl carnitine was observed after 20 min of incubation, the incorporation in synaptosomes increased as a function of time up to 60 min of incubation. We conclude that synaptosomes can carry on de novo synthesis of lipids, although at a limited rate. From the present data we cannot state with certainty how much of this synthesis is attributable to membranes originating from the endoplasmic reticulum.  相似文献   

7.
A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca2+ signalling and maintenance of Ca2+ homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca2+-ATPase, Na+, K+-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca2+ ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca2+ entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca2+ entry, and their formation and rebuilding have an important regulatory role in cellular Ca2+ homeostasis.  相似文献   

8.
Summary Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membrane enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

9.
Summary Tobacco (Nicotiana tabacum L.) pollen, germinated 4 hours in suspension culture, was labeled with radioactive leucine and fractionated into constituent membranes by the technique of preparative free-flow electrophoresis. Tubes were ruptured by sonication directly into the electrophoresis buffer. Unfortunately, the Golgi apparatus of the rapidly elongating pollen tubes did not survive the sonication step. However, it was possible to obtain useful fractions of endoplasmic reticulum and mitochondria. To obtain Golgi apparatus, glutaraldehyde was added to the homogenization buffer during sonication. Plasma membrane, which accounted for only about 3% of the total membrane of the homogenates as determined by staining with phosphotungstate at low pH, was obtained in insufficient quantity and fraction purity to permit analysis. Results show rapid incorporation of [3H]leucine into endoplasmic reticulum followed by rapid chase out. The half-time for loss of radioactivity from the pollen tube endoplasmic reticulum was about 10 minutes. Concomitant with the loss of radioactivity from endoplasmic reticulum, the Golgi apparatus fraction was labeled reaching a maximum 20 minutes post chase. The findings suggest flow of membranes from endoplasmic reticulum to the Golgi apparatus during pollen tube growth.  相似文献   

10.
Mitochondria can synthesize phosphatidyl-ethanolamine (PE) through phosphatidylserine decarboxylase (PS decarboxylase) activity or can import this lipid from the endoplasmic reticulum. In this work, we studied the factors influencing the import of PE in brain mitochondria and its utilization for the assembly of mitochondrial membranes. Incubation of rat brain homogenate with [1-3H]ethanolamine resulted in the synthesis and distribution of 3H-PE to subcellular fractions. T-wenty-one percent of labeled PE was recovered in purified mitochondria. The import of PE in mitochondria was studied in a reconstituted system made of microsomes (donor particles) and purified mitochondria (acceptor particles). Ca+2 and nonspecific lipid transfer protein purified from liver tissue (nsL-TP) enhanced the translocation process. 3H-PE synthesized in membrane associated to mitochondria (MAM) could also translocate to mitochondria in the reconstituted system. Exposure of mitochondria to trinitrobenzensulfonic acid (TNBS) resulted in the reaction of more than 60% of 3H-PE imported from endoplasmic reticulum and of about 25% of 14C-PE produced in mitochondria by decarboxylation of 14C-PS. Moreover, the removal of the outer mitochondrial membrane by digitonin treatment, resulted in the loss of 3H-PE, but not 14C-PE. These results indicate that labeled PE imported in mitochondria is mainly localized in the outer mitochondrial membrane, whereas PE produced by PS decarboxylase activity is confined to the inner mitochondrial membrane. Phospholipase C hydrolyzed 25–30% of both PE radioactivity and mass of the outer mitochondrial membrane indicating an asymmetrical distribution of this lipid across the membrane.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work has been supported by a grant from the Ministry of Education, Rome, Italy.  相似文献   

11.
We have assayed absorbance changes generated by blue light in plasma membranes, endoplasmic reticulum, and mitochondrial membranes from Neurospora crassa. Light minus dark difference spectra, obtained anaerobically in the presence of ethylenediaminetetraacetate, indicated that b-type cytochromes could be photoreduced in all three membranes. In plasma membranes, a b-type cytochrome with a distinct difference spectrum was photoreducible without addition of exogenous flavin. Addition of riboflavin greatly stimulated the photoreduction of cytochromes in endoplasmic reticulum and mitochondrial membranes. In its spectral characteristics the cytochrome on the endoplasmic reticulum resembled cytochrome b5 or nitrate reductase, while the cytochrome in mitochondrial membranes had the same spectrum as cytochrome b of the mitochondrial respiratory chain.

Cytochromes in the three membrane fractions reacted differently to blue light in the presence of various inhibitors. Potassium azide inhibited reduction of plasma membrane cytochrome b, with 50% inhibition at 1.0 millimolar. The same concentration of azide stimulated photoreduction of cytochromes in both endoplasmic reticulum and mitochondria. Although photoreduction of cytochromes in all three membranes was inhibited by salicylhydroxamic acid, cytochromes in plasma membranes were more sensitive to this inhibitor than those in endoplasmic reticulum and mitochondria. Cells grown to induce nitrate reductase activity showed an elevated amount of blue light-reducible cytochrome b in the endoplasmic reticulum.

  相似文献   

12.
Very few silver grains were seen on the cell surface and none intracellularly after incubation for 2 h at 4 °C. However, numerous grains were seen in various subcellular organelles when the tissues were incubated for 2 h at 22 ° or 38 °C. The grain distribution was qualitatively similar, but quantitatively, there were fewer grains at 22 ° than at 38 °C. Co-incubation of 125I-hCG with excess unlabelled hCG resulted in the virtual disappearance of silver grains from all the subcellular organelles. Excess unlabelled human luteinizing hormone (but not follicle-stimulating hormone or prolactin) inhibited the appearance of silver grains in luteal tissue. There were no silver grains in bovine liver slices incubated with 125I-hCG.The plasma membrane-associated grains progressively decreased, while intracellular organelle-associated grains increased with time at 38 °C. There were no grains in nuclei at 5 min, but they appeared at 10 min and increased until 120 min. After correction for radiation spread by three-step mask analysis, smooth endoplasmic reticulum and mitochondria did not contain any grains. The grain density was the highest in Golgi, followed by lysosomes, rough endoplasmic reticulum, nuclei, and plasma membranes after incubation for 2 h at 38 °C. Thus, the electron microscope autoradiography approach confirmed our biochemical data in the preceding paper (Chegini et al., Exp cell res 151 (1984) 466 [5]) on time, temperature dependency and specificity of 125I-hCG internalization, association of internalized hormone with a variety of intracellular organelles, and the highest uptake in Golgi.  相似文献   

13.
Membrane lipid metabolism in germinating castor bean endosperm   总被引:9,自引:7,他引:2       下载免费PDF全文
Castor bean (Ricinus communis L. var. Hale) endosperms, excised after 2 days germination at 30 C, were incubated 5 min to 8 hr with 14C-acetate and 3H-glycerol. Homogenates were fractionated by sucrose gradient centrifugation. Organelles found to be active in lipid synthesis were the lipid bodies and the endoplasmic reticulum. The products of incorporation in the lipid bodies were 3H-diglycerides containing 14C-fatty acids of more than 20 carbons. In contrast, the endoplasmic reticulum produced 3H-phospholipids as well as 3H-diglycerides rich in 14C-linoleate. The phospholipids synthesized and their acyl contents were of the types known to be the major components of organelle membranes in this tissue. Phospholipids and diglycerides containing 14C and 3H were found in the glyoxysomes and mitochondria subsequent to their appearance in the endoplasmic reticulum. The results show that germinating castor bean endosperm synthesizes membrane lipids de novo from acetate rather than reutilizing stored lipid components directly. It is also apparent that the endoplasmic reticulum is responsible for several steps in membrane lipid production.  相似文献   

14.
Rapid cooling (cold shocking) of washed ejaculated ram sperm to 0°C irreversibly reduced motility, tail beat frequency, and respiration and increased the uptake of 45Ca2+. The plasma membranes were removed from the sperm head, and the acrosomes were detached from the nuclei. The plasma membranes of the middle piece were removed, and the mitochondria contained pale and expanded cristae, similar in appearance to ATP-deprived mitochondria in the “condensed” configuration. The presence of 2.0 mg/ml phosphatidylcholine (lecithin) in the medium prevented ultrastructural damage on cold shock, and the motility, tail beat frequency, respiratory rate, and calcium uptake were maintained at levels similar to washed sperm. As the “protective” effect of phosphatidylcholine against cold shock was maintained to a certain extent after rewashing and centrifuging the sperm prior to cold shock, the interaction of phosphatidylcholine with ram sperm membranes may be fairly “tight” and not easily disrupted.  相似文献   

15.
Highly purified rough endoplasmic reticulum and three subfractions of golgi were prepared from 105,000g pellet of the homogenate by centrifugation in floatation and sedimentation discontinuous sucrose gradients. Highly purified plasma membranes were also prepared from 9,000g pellet of the same homogenates for assessment under the same experimental conditions. Although 5′-nucleotidase, a marker for plasma membranes, was markedly enriched in plasma membranes, very little or none of this enzyme activity was found in other fractions. Very little or no NADH cytochrome c reductase activity, a marker for rough endoplasmic reticulum, was found in fractions other than rough endoplasmic reticulum. Galactosyl transferase, a marker for golgi, was found and enriched in all the fractions; however, enrichment in golgi fractions was higher than in other fractions. Very little or no lysosomal marker activity, i.e., acid phosphatase, was found in rough endoplasmic reticulum or golgi fractions as compared to lysosomes. These marker enzyme data suggested that rough endoplasmic reticulum and golgi fractions were relatively pure with little or no cross contamination with other organelles. The [125I]human choriogonadotropin ([125I]hCG), [3H]prostaglandin (PG)E1, and [3H]PGF2a specifically bound to rough endoplasmic reticulum and golgi fractions in addition to plasma membranes. The enrichments of binding in the former two fractions, in some cases, were as high as plasma membranes itself. The specific binding of some of the ligands was found to be partially latent in rough endoplasmic reticulum and golgi fractions but not in plasma membranes. Marker enzyme data, ratio between bindings and marker enzyme activities (an index of organelle contamination), and partial latency of binding suggest that rough endoplasmic reticulum and golgi fractions intrinsically contain gonadotropin and PGs binding sites.  相似文献   

16.
Distribution of phytochrome (as Pfr) among membranes from soybean hypocotyls (Glycine max L. cv. Wayne) was determined by the combined techniques of cell fractionation, difference spectrometry, and electron microscopic morphometry. More than 90% of the phytochrome was found in the soluble fraction. With homogenates prepared in the presence or absence of Mg2+, the portion associated with membrane was only 6.5% and 1%, respectively. In the presence of Mg2+, the content of particulate phytochrome correlated with the amount of endoplasmic reticulum with attached ribosomes in the fractions but not with mitochondria or other membranes (including endoplasmic reticulum membranes from which the ribosomes may have been lost during cell fractionation). In the absence of Mg2+, phytochrome was associated with a “heavy” plasma membrane fraction. The phytochrome content was sufficiently low to be accounted for by a contamination of less than 10% by rough-surfaced fragments of endoplasmic reticulum. The findings show association of phytochrome with a particulate fraction enriched in rough-surfaced fragments of endoplasmic reticulum but do not rule out cosedimentation of some unknown or unspecific phytochrome aggregate with this fraction.  相似文献   

17.
Summary ATP-dependent cell-free transfer of membrane constituents radiolabeled with [14C]acetate, primarily lipids, was demonstrated between isolated nuclei in suspension and purified Golgi apparatus immobilized on nitrocellulose strips prepared from garden pea (Pisum sativum) in the presence of pea cytosol. The ATP-dependent transfer correlated with the ability of the nuclear envelope to form 50–70 nm vesicles and blebs in an ATP-dependent manner. Specific transfer, transfer at 23°C minus transfer at 4°C, was approximately doubled by addition of ATP and was greater for peas germinated for 2 days than for peas germinated for 3 days. ATP plus cytosol-dependent transfer could not be demonstrated using radiolabeled pea nuclei as donor with purified endoplasmic reticulum, plasma membrane, nuclei, mitochondria or amyloplasts as acceptors. The results provide a second example, in addition to transfer between endoplasmic reticulum and Golgi apparatus, where ATP-and temperature-dependent transfer via 50–70 nm transition vesicles can be demonstrated in a cell-free system.  相似文献   

18.
Coenzyme Q (Q) is an essential factor in the mitochondrial electron chain but also exerts important antioxidant functions in the rest of cell membranes of aerobic organisms. However, the mechanisms of distribution of Q among cell membranes are largely unclear. The aim of the present work is to study the mechanisms of distribution of endogenous Q10 and exogenous Q9 among cell membranes in human HL-60 cells. Endogenous Q10 synthesized using the radiolabelled precursor [14C]-pHB was first detected in mitochondria, and it was later incorporated into mitochondria-associated membranes and endoplasmic reticulum (ER). Plasma membrane was the last location to incorporate [14C]-Q10. Brefeldin A prevented Q10 incorporation in plasma membrane. Exogenous Q9 was preferably accumulated into the endo-lysosomal fraction but a significant amount was distributed among other cell membranes also depending on the brefeldin-A-sensitive endomembrane system. Our results indicate that mitochondria are the first location for new synthesized Q. Exogenous Q is mainly incorporated into an endo-lysosomal fraction, which is then rapidly incorporated to cell membranes mainly to MAM and mitochondria. We also demonstrate that both endogenous and dietary Q is distributed among endomembranes and plasma membrane by the brefeldin A-sensitive endo-exocytic pathway.  相似文献   

19.
Isolation and characterization of rabbit kidney brush borders   总被引:7,自引:7,他引:0       下载免费PDF全文
1. Brush borders were isolated from rabbit kidney-cortex homogenates by rate-zonal centrifugation through a sucrose density gradient in a B-XIV zonal rotor, followed by differential centrifugation. 2. The method of preparation gave brush borders of high purity with a reasonable yield. The morphological appearance supported the evidence from enzymic and chemical investigations, that the brush borders were only slightly contaminated with endoplasmic reticulum, mitochondria, lysosomes and nuclei. 3. The molar ratio of cholesterol to phospholipid lay within the range found in other plasma membranes, but the carbohydrate content was double that found in liver plasma membranes. 4. Alkaline phosphatase, maltase, trehalase and aminopeptidase were major enzymic constituents of the brush borders, and had an approximately equal yield and enrichment, but none of these enzymes fulfilled the criteria for marker enzymes. 5. Mg2+-dependent and Na+,K+-dependent adenosine triphosphatases, although found in brush borders, had low yields and low enrichments.  相似文献   

20.
Injection of choline-3H into choline-deficient rats resulted in an enhanced incorporation of the label into liver lecithin, as compared to the incorporation of label into liver lecithin of normal rats. The results obtained with the use of different lecithin precursors indicate that in the intact liver cell, both in vivo and in vitro, exchange of choline with phosphatidyl-choline is not significant. The synthesis and secretion of lecithins by the choline-deficient liver compare favorably with the liver of choline-supplemented rats, when both are presented with labeled choline or lysolecithin as lecithin precursors. Radioautography of the choline-deficient liver shows that 5 min after injection of choline-3H the newly synthesized lecithin is found in the endoplasmic reticulum (62%), mitochondria (13%), and at the "cell boundary" (20%). The ratio of the specific activity of microsomal and mitochondrial lecithin, labeled with choline, glycerol, or linoleate, was 1.53 at 5 min after injection, but the ratio of the specific activity of phosphatidyl ethanolamine (PE), labeled with ethanolamine, was 5.3. These results indicate that lecithin and PE are synthesized mainly in the endoplasmic reticulum, and are transferred into mitochondria at different rates. The site of a precursor pool of bile lecithin was studied in the intact rat and in the perfused liver. Following labeling with choline-3H, microsomal lecithin isolated from perfused liver had a specific activity lower than that of bile lecithin, but the specific activity of microsomal linoleyl lecithin was comparable to that of bile lecithin between 30 and 90 min of perfusion. It is proposed that the site of the bile lecithin pool is located in the endoplasmic reticulum and that the pool consists mostly of linoleyl lecithin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号