首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Do deep tree roots provide nutrients to the tropical rainforest?   总被引:1,自引:1,他引:0  
The contribution of deep tree roots to the nutrition of a tropicalrainforest were studied along an edaphic transect in French Guyana. Soil typeswere mapped in relation to the texture of the upper horizons and the depth ofoccurrence of the loamy saprolite. The position of mature individuals of fourcommon species, differing by they rooting depth, was identified and tree leaveswere analysed for major nutrients and strontium (Sr) isotopic ratios.On average, the range of leaf isotopic ratio (87Sr/86Sr= 0.714–0.716) was narrow compared to that of bulk soils(87Sr/86Sr = 0.72–0.77). Steep gradients ofincreasing 87Sr/86Sr in roots with soil depth were foundin all investigated profiles, which indicated that the flux of Sr deposited inrain and leached from the litter layer was tightly retained in the upper soillayers. Over the whole of the site, as well as within each soil unit, tree87Sr/86Sr ratios were very similar whatever the species,and close to litter and near-surface roots 87Sr/86Srratios, suggesting no or very little Sr contribution from deep tree roots.Variations of Ca and Sr concentrations in leaves were strongly correlated butnot with leaf 87Sr/86Sr ratios. These results support thetheory that Sr and Ca uptake and cycling are mostly superficial in tropicalrainforests.  相似文献   

2.
The mean depth of Sr and water uptake in mixed Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stands was investigated, using natural variations of 87Sr/86Sr and 18O/16O in soils in relation to depth. Three spruce-pine pairs were studied on a podzol and a peat site in Northern Sweden. Tree leaf and wood, as well as soils, soil solutions and roots below each tree were analysed for Sr and Ca concentrations and 87Sr/86Sr ratio. The 18O/16O ratio was also determined in xylem sap and soil solutions in relation to depth. Soil solution 18O/16O decreased in relation to depth. Comparing with xylem sap 18O/16O data indicated a deeper uptake of soil water by pine than spruce on the podzol site and a superficial uptake by both species on the peat. The 87Sr/86Sr ratio of bioavailable Sr generally increased in soils in relation to depth. Contrastingly, the 87Sr/86Sr ratio in spruce wood was generally higher than in pine wood suggesting a deeper uptake of Sr by spruce. But the 87Sr/86Sr ratio and concentrations of bioavailable Sr were systematically higher below spruce than below pine. In order to explain these unexpected results, we built a simple flux model to investigate the possible effects of interspecific variations in Sr cycling, soil mineral weathering and depth of Sr uptake on soil and tree 87Sr/86Sr ratio. At the study sites, spruce cycled in litterfall up to 12 times more strontium than pine. The use of the model showed that this difference in Sr cycling could alone explain higher isotopic signatures of trees and topsoils below spruce. Besides, high isotopic signatures of roots in the A/E horizons below spruce led us to hypothesise a species-specific weathering process. Finally, the comparison between the 87Sr/86Sr ratios in wood and root or soil solutions below each species suggested that the average depth of Sr and water uptake were close, but irregular variations of the Sr isotopic ratio with depth reduce the accuracy of the results. Tree species strongly influence Sr isotopic ratios in boreal forest soils through differences in Sr cycling, and possibly through specific mineral weathering.  相似文献   

3.
Calcium/strontium and 87Sr/86Sr ratios in foliage can be used to determine the relative importance of different soil sources of Ca to vegetation, if the discrimination of Ca/Sr by the plant between nutrient sources and foliage is known. We compared these tracers in the foliage of sugar maple (Acer saccharum) to the exchange fraction and acid leaches of soil horizons at six study sites in the White Mountains of New Hampshire, USA. In a previous study, sugar maple was shown to discriminate for Ca compared to Sr in foliage formation by a factor of 1.14 ± 0.12. After accounting for the predicted 14% shift in Ca/Sr, foliar Ca/Sr and 87Sr/86Sr ratios closely match the values in the Oie horizon at each study site across a 3.6-fold variation in foliar Ca/Sr ratios. Newly weathered cations, for which the Ca/Sr and 87Sr/86Sr ratios are estimated from acid leaches of soils, can be ruled out as a major Ca source to current foliage. Within sites, the 87Sr/86Sr ratio of the soil exchange pool in the Oa horizon and in the 0–10 cm and 10–20 cm increments of the mineral soil are similar to the Oie horizon and sugar maple foliar values, suggesting a common source of Sr in all of the actively cycling pools, but providing no help in distinguishing among them as sources to foliage. The Ca/Sr ratio in the soil exchange pool, however, decreases significantly with depth, and based on this variation, the exchange pool below the forest floor can be excluded as a major Ca source to the current sugar maple foliage. This study confirms that internal recycling of Ca between litter, organic soil horizons and vegetation dominate annual uptake of Ca in northern hardwood ecosystems. Refinement of our understanding of Ca and Sr uptake and allocation in trees allows improvement in the use of Ca/Sr and 87Sr/86Sr ratios to trace Ca sources to plants.  相似文献   

4.
Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible alternative explanations of aspects of the observed trends, the chemical buffering capacity of the forest floor-biomass pool limits their effectiveness as causal mechanisms.  相似文献   

5.
Many studies made in Europe and North America have shown an increasing depletion of exchangeable base cations that may cause tree nutritional deficiencies in sensitive soils. We use radial variation of strontium isotope in tree-rings (87Sr/86Sr ratio) to monitor possible changes in Ca sources for tree nutrition (Sr is used as an analog to Ca). The two main sources of Ca in forest stands are mineral weathering release and atmospheric inputs. Measurements in several forest stands in temperate regions show a steep decrease from pith to outer wood of the Sr isotope ratio from∼1870 to∼1920 except for stands developed on soils with a higher Ca status. This suggests a decrease of the weathering contribution (high 87Sr/86Sr ratio) when cations are displaced from the soil exchange complex by acid deposition at a rate faster than the replenishment of the cation pool by mineral weathering. This displacement enhances the atmospheric contribution, which is characterized by a low 87Sr/86Sr ratio. Tree-ring chronologies are an exceptional historic-timing record of chemical changes in the soil environment induced by atmospheric pollution. The reliability of the tree-ring recorder has been verified with a well-controlled nutritional perturbation in the context of a limed forest stand (with a known liming Sr isotopic signature). Our data suggest that forest ecosystems were affected by atmospheric inputs of strong acids earlier than previously thought.  相似文献   

6.
Localisation of mineral uptake by roots using Sr isotopes   总被引:1,自引:0,他引:1  
To assess the contribution of deep soil horizons to the mineral supply of trees, we investigated the natural variation in the87 Sr/86Sr isotopic ratio of plant-available strontium with soil depth. In three sites of North-western Spain, this ratio increased with soil depth. The comparison of isotopic ratios of tree leaves and roots at different depths showed that most of the Sr accumulation in Eucalyptus globulus and Pinus pinaster growing on shallow and poor soils in this rainy climate originated from the upper soil layers. As Ca and Sr behave similarly in the soil-plant system, this conclusion can be applied to Ca. This superficial uptake is attributed to the low availability of Sr and Ca in the soil as well as to the shortness of the drought period as compared to the length of the growth period. This technique appears to offer a promising way of studying relative root distributions in soils and plant competition for nutrients.  相似文献   

7.
Strontium (Sr) isotope analysis can provide detailed biogeographical and ecological information about modern and ancient organisms. Because Sr isotope ratios (87Sr/86Sr) in biologically relevant materials such as water, soil, vegetation, and animal tissues predominantly reflect local geology, they can be used to distinguish geologically distinct regions as well as identify highly mobile individuals or populations. While the application of Sr isotope analysis to biological research has been steadily increasing, high analytical costs have prohibited more widespread use. Additionally, accessibility of this geochemical tool has been hampered due to limited understanding of (i) the degree to which biologically relevant materials differ in their spatial averaging of 87Sr/86Sr ratios, and (ii) how these differences may be affected by lithologic complexity. A recently developed continental‐scale model that accounts for variability in bedrock weathering rates and predicts Sr isotope ratios of surface water could help resolve these questions. In addition, if this ‘local water’ model can accurately predict 87Sr/86Sr ratios for other biologically relevant materials, there would be reduced need for researchers to assess regional Sr isotope patterns empirically. Here, we compile 87Sr/86Sr data for surface water, soil, vegetation, and mammalian and fish skeletal tissues from the literature and compare the accuracy with which the local water model predicts Sr isotope data among these five materials across the contiguous USA. We find that measured Sr isotope ratios for all five materials are generally close to those predicted by the local water model, although not with uniform accuracy. Mammal skeletal tissues are most accurately predicted, particularly in regions with low variability in 87Sr/86Sr predicted by the local water model. Increasing regional geologic heterogeneity increases both the offset and variance between modelled and empirical Sr isotope ratios, but its effects are broadly similar across materials. The local water model thus provides a readily available source of background data for predicting 87Sr/86Sr for biologically relevant materials in places where empirical data are lacking. The availability of increasingly high‐quality modelled Sr data will dramatically expand the accessibility of this geochemical tool to ecological applications.  相似文献   

8.
We investigated natural variations in the stable isotopic composition of strontium (a surrogate for calcium) in the bones of a single species of breeding migratory songbird, as well as in their eggshells, egg contents, and food sources. We use this information to determine the sources of calcium to these migratory songbirds and their offspring. Samples were collected from two locations in the northeastern USA (Hubbard Brook, NH, and Downer Forest, VT.) that differed in soil geochemistry. The mean 87Sr/86Sr ratios of food items (caterpillars and snails), eggshells, and egg contents were indistinguishable within each site, but significantly different between the two sites. Mean 87Sr/86Sr ratios for the bones of adult females were significantly different between the two sites, but values were significantly lower than those of food items and eggshells at each site. Two of four adult individuals studied at each site had 87Sr/86Sr ratios lower than the entire range of values for local food sources. Mixing calculations indicate that up to 60% of skeletal strontium and calcium was derived from foods consumed in the winter grounds where lower 87Sr/86Sr ratios predominate. At each study site, the 87Sr/86Sr ratio of eggshells differed significantly between clutches, but the mean clutch 87Sr/86Sr ratios were unrelated to the skeletal 87Sr/86Sr ratio of the laying adult. These findings suggest that strontium (and hence calcium) for eggshell production in this species is derived predominantly from local food sources in breeding areas. Thus, reductions in available calcium in northern temperate ecosystems due to the influences of acid deposition could be potentially harmful to this and other species of migratory bird.  相似文献   

9.
The use of strontium isotopes and ratios of alkaline earth elements (i.e., 87Sr/86Sr and Ca/Sr) to trace Ca sources to plants has become common in ecosystem studies. Here we examine the relative uptake of Ca and Sr in trees and subsequent accumulation in foliage. Using a whole-watershed Ca addition experiment at the Hubbard Brook Experimental Forest in N.H., we measured the uptake of Ca relative to Sr in foliage and roots of sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), American beech (Fagus grandifolia), and red spruce (Picea rubens). Vegetation was analyzed for Ca and Sr concentrations and the 87Sr/86Sr ratio. A comparison of the Ca/Sr ratio in the vegetation and the Ca/Sr ratio of the applied mineral allows for the calculation of a discrimination factor, which defines whether Ca and Sr are incorporated and allocated in the same ratio as that which is available. A discrimination factor greater than unity indicates preferential uptake of Ca over Sr; a factor less than unity reflects preferential uptake of Sr over Ca. We demonstrate that sugar maple (SM) and yellow birch (YB) have similar and small discrimination factors (1.14 ± 0.12,1σ and 1.16 ± 0.09,1σ) in foliage formation and discrimination factors of less than 1 in root formation (0.55–0.70). Uptake into beech suggests a larger discrimination factor (1.9 ± 1.2) in foliage but a similar root discrimination factor to SM and YB (0.66 ± 0.06,1σ). Incorporation into spruce foliage occurs at a much slower rate than in these other tree species and precludes evaluation of Ca and Sr discrimination in spruce foliage at this time. Understanding the degree to which Ca is fractionated from Sr in different species allows for refinement in the use of 87Sr/86Sr and Ca/Sr ratios to trace Ca sources to foliage. Methods from this study can be applied to natural environments in which various soil cation pools have different 87Sr/86Sr and Ca/Sr ratios. The results reported herein have implications for re-evaluating Ca sources and fluxes in forest ecosystems.  相似文献   

10.
The variability and biologicalfractionation of Sr/Ca, Ba/Ca and 87Sr/86Srratios were studied in a soil–plant–invertebrate–bird food chain in two forested ecosystems withcontrasting calcium availability in the northeasternU.S.A. Chemical measurements were made of the soilexchange pool, leaves, caterpillars, snails, and boththe femurs and eggshells of breeding insectivorousmigratory songbirds. 87Sr/86Sr values weretransferred up the food chain from the soil exchangepool to leaves, caterpillars, snails and eggshellswithout modification. Adult birds were the oneexception; their 87Sr/86Sr values generallyreflected those of lower trophic levels at each site,but were lower and more variable, probably becausetheir strontium was derived in part from foods intropical winter habitats where lower87Sr/86Sr ratios are likely to predominate. Sr/Ca and Ba/Ca ratios decreased at each successive trophiclevel, supporting previous suggestions that Sr/Ca andBa/Ca ratios can be used to identify the trophic levelat which an organism is primarily feeding. The changesin Sr/Ca and Ba/Ca ratios we measured for vegetationand insects were comparable to similar measurementsmade previously (but based on single samples of eachorganism) in an alpine ecosystem. Changes in Sr/Ca andBa/Ca ratios between birds and their food have notpreviously been measured, but the values we obtainedwere similar to those for herbivorous and carnivorousmammals at similar trophic levels. Our results provideevidence that supports the use of Sr/Ca ratios in thedetermination of human paleodiets and suggests thatSr/Ca ratios may also provide a useful tool in studiesof modern food webs. Furthermore, our findings suggestthat 90Sr from nuclear fallout will notbioaccumulate in forests and that changes in Sr/Caratios between trophic levels will need to beconsidered in some cases when using87Sr/86Sr as a tracer of calciumbiogeochemistry.  相似文献   

11.
引黄灌区土壤有机碳密度剖面特征及固碳速率   总被引:2,自引:0,他引:2  
为揭示灌溉耕作对土壤有机碳密度剖面(0—100 cm)分布产生的影响,通过在宁夏引黄灌区进行实地调查与采样,以无灌溉耕作的自然土壤作为对照,研究不同灌溉耕作时间序列下灌区土壤有机碳密度的剖面分布特征,并估算其平均固碳速率。结果表明:灌区土壤有机碳含量具有随土层深度增加而下降的剖面分布特征,灌溉耕作对增加表层土壤有机碳含量作用最明显;灌区土壤剖面碳密度与灌溉耕作时间和土壤类型均显著相关(P0.01),相关系数分别为0.63和0.74,且因灌溉耕作时间和土壤类型的不同,土壤有机碳密度差异性显著(P0.05);灌溉耕作影响的土层深度及剖面土壤有机碳密度的增加量因灌溉耕作时间长短的不同而异;引黄灌区5类土壤的平均固碳速率为0.53 MgC·hm-2·a-1。引黄灌溉耕作在增加农田土壤固碳中发挥着重要作用。  相似文献   

12.
A comparison between Ca and Sr cycling in forest ecosystems   总被引:8,自引:1,他引:7  
Poszwa  Anne  Dambrine  Etienne  Pollier  Benoît  Atteia  Olivier 《Plant and Soil》2000,225(1-2):299-310
In favourable conditions, the 87Sr/86Sr isotope ratios of the Sr delivered by rain and soil mineral weathering differ. Assuming that Ca and Sr behave similarly in forest ecosystems, several authors have used the 87Sr/86Sr variation in forest compartments to calculate the contribution of rain and mineral weathering to Ca fluxes and pools. However, there are a number of experimental reports showing that Ca and Sr may behave differently in the soil and in the plant. We have tested this Ca–Sr analogy in the field by measuring the variation of Sr and Ca concentrations, fluxes and pools in spruce, beech and maple stands on granite, sandstone and limestone. Results show that (1) variations of Ca and Sr concentrations are generally correlated at each level of the ecosystems. (2) In spruce on acid soils, a preferential uptake of Ca over Sr occurs (Aubure spruce Sr/Ca = 0.8×10−3; soil exchangeable Sr/Ca between 2 and 6×10−3). On calcareous soils, a preferential uptake of Sr over Ca by spruce may occur. (3) In spruce and beech on acid and calcareous soils, a preferential translocation of Ca over Sr from roots to leaves occurs ((Sr/Ca) in leaves was between 10 and 90% of that in roots). (4) The biological cycling of Ca and Sr leads to an enrichment of the upper soil layers in Ca and Sr. Compared to Sr, Ca accumulates in the upper layer of acid soils because Ca cycling through litterfall is favoured over Sr cycling, and possibly because of the selectivity of acid organic exchangers for Ca. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Otolith elemental (Sr:Ca, Ba:Ca, Mn:Ca, Mg:Ca and Rb:Ca) and isotopic (87Sr:86Sr) profiles from several annual cohorts of juvenile Atlantic salmon Salmo salar were related to the physico‐chemical characteristics (chemical signatures, flow rate, temperature and conductivity) of their natal rivers over an annual hydrological cycle. Only Sr:Ca, Ba:Ca and 87Sr:86Sr in otoliths were determined by their respective ratios in the ambient water. Sr:Ca ratios in stream waters fluctuated strongly on a seasonal basis, but these fluctuations, mainly driven by water flow regimes, were not recorded in the otoliths. Otolith Sr:Ca ratios remained constant during freshwater residency at a given site and were exclusively related to water Sr:Ca ratios during low flow periods. While interannual differences in otolith elemental composition among rivers were observed, this variability was minor compared to geographic variability and did not limit classification of juveniles to their natal stream. Success in discriminating fish from different sites was greatest using Sr isotopes as it remained relatively constant across years at a given location.  相似文献   

14.
Well-preserved fossils of the Late Cretaceous Western Interior Seaway (WIS) of North America have been analyzed for Sr concentration and Sr and O isotopes in order to decipher paleosalinities and paleotemperatures. The samples are from four biofacies within the Seaway (late Maastrichtian): offshore Interior (Pierre Shale), nearshore Interior (Fox Hills Formation), brackish (reduced salinity; Fox Hills Formation) and freshwater (Hell Creek Formation). Samples were also obtained from the Severn Formation of Maryland (considered to be representative of the open ocean). All biofacies (except the freshwater) are demonstrably within the Jeletzkytes nebrascensis ammonite zone (<1 Ma duration). The 87Sr/86Sr ratios show significant and systematic decreases from marine (mean±1 S.D.=0.707839±0.000024) to brackish facies (mean±1 S.D.=0.707677±0.000036), consistent with dilution by freshwater with a lower 87Sr/86Sr ratio than seawater. Such variation disallows using the 87Sr/86Sr ratios of fossil shell material to assign ages to fossils from the Late Cretaceous WIS without knowledge of the salinity in which the organism grew. The Sr isotope ratios for scaphitid ammonites within a single biofacies are similar to each other and different from those for scaphites in other biofacies, implying that these organisms are restricted in their distribution during life. The 87Sr/86Sr values of freshwater unionid mussels range widely and are not compatible with the freshwater endmember 87Sr/86Sr ratio required by the trend in 87Sr/86Sr vs. biofacies established from the other samples. Paleosalinities for the biofacies are estimated to range from 35‰ in the open marine to a minimum of 20‰ in the brackish, based on the presence of cephalopods in all four facies and the known salinity tolerance of modern cephalopods. Producing reasonable 87Sr/86Sr values for the freshwater endmember of a 87Sr/86Sr vs. 1/[Sr] plot requires a Sr concentration 0.2-0.5 that of seawater for the dominant freshwater input to the WIS. Such high Sr concentrations (relative to seawater) are not observed in modern rivers, and we suggest that the brackish environment in the WIS arose through the mixing of freshwater and seawater in a nearshore aquifer system. Reactions of the solution with aquifer solids in this ‘subterranean estuary’ [Moore, Mar. Chem. 65 (1999) 111-125] produced brackish water with the Sr concentration and isotopic composition recorded in the brackish biofacies. δ18O values of the fossils show decreases from the marine to brackish biofacies consistent with increasing temperatures (from ∼13 to 23°C) or, if temperatures were relatively constant, to a decrease in the δ18O of the water in which the shell formed. The latter interpretation is consistent with less-than-fully marine salinities in the nearshore biofacies, but both changes in temperature and the isotopic composition of the water may have occurred in this environment.  相似文献   

15.
Soil weathering can be an important mechanism to neutralize acidity inforest soils. Tree species may differ in their effect on or response to soilweathering. We used soil mineral data and the natural strontium isotope ratio87Sr/86Sr as a tracer to identify the effect of treespecies on the Ca weathering rate. The tree species studied were sugar maple(Acer saccharum), hemlock (TsugaCanadensis), American beech (Fagusgrandifolia),red maple (Acer rubrum), white ash (FraxinusAmericana) and red oak (Quercus rubra) growingin a forest in northwestern Connecticut, USA. Three replicated sites dominatedby one of the six tree species were selected. At sugar maple and hemlock sitesthe dominant mineral concentrations were determined at three soil depths. Ateach site soil, soil water and stem wood of the dominant tree species weresampled and analyzed for the 87Sr/86Sr ratio, total SrandCa content. Atmospheric deposition was collected and analyzed for the sameconstituents. Optical analysis showed that biotite and plagioclaseconcentrations were lower in the soil beneath hemlock than beneath sugar mapleand suggested species effects on mineral weathering in the upper 10cm of the mineral soil. These results could not be confirmed withdata obtained by the Sr isotope study. Within the sensitivity of the Sr isotopemethod, we could not detect tree species effects on Ca weathering andcalculatedCa weathering rates were low at all sites (< 60mgm–2yr–1). Wefound a positive correlation between Ca weathering and the total Caconcentration in the surface soil. These results indicate that the absolutedifferences in Ca weathering rate between tree species in these acidic surfacesoils are small and are more controlled by the soil parent material(plagioclasecontent) than by tree species.  相似文献   

16.
Present application of 87Sr/86Sr chemostratigraphy to detailed stratigraphical tasks is limited by inaccurate calibration of the general seawater strontium curve to absolute as well as to relative time scales. For this reason, refinement of the general seawater strontium curve has been suggested, using mainly clearly defined global boundary stratotype sections. This study reports the first 87Sr/86Sr data from the global Silurian/Devonian boundary stratotype section and fills an existing 1-Ma gap in available data. Generally, the data from the stratotype fit the range interpolated from published 87Sr/86Sr data of the general curve, but the slight differences may suggest an existence of a high-order oscillation near the Silurian/Devonian boundary. Higher 87Sr/86Sr values in the Devonian part of boundary bed 20 (20-beta) may indicate an exotic material influx of recycled sediment.  相似文献   

17.
Wallander  Håkan 《Plant and Soil》2000,222(1-2):215-229
Pinus sylvestris seedlings, colonised by ectomycorrhizal (EM) fungi from either of two different soils (untreated forest soil and a limed soil from a clear cut area), were grown with or without biotite as a source of K. The biotite was naturally enriched in 87Sr and the ratio of 87Sr/ 86Sr in the plant biomass was estimated and used as a marker for biotite weathering and compared to estimates of weathering based on foliar content of K. Different nutrient regimes were used to expose the seedlings to deficiencies of K with and without an application of nitrogen (NH4NO3) in excess of seedling demand. The seedlings were grown for 220 days and the elemental composition of the shoots were analysed at harvest. The EM colonisation was followed by analysing the concentration of ergosterol in the roots and the soils. Bacterial activity of the soil was estimated by the thymidine incorporation technique. The concentration of organic acids in the soil solution was measured in the soil in which seedlings colonised by EM fungi from the untreated forest soil were grown. It was found that seedlings colonised by EM fungi from untreated forest soil had taken up more K in treatments with biotite addition compared to seedlings colonised by EM fungi from the limed forest soil (p<0.05). Seedlings from untreated forest soil had larger shoots and contained more K when grown with biotite compared to KCl as K source, indicating that biotite had a stimulatory effect on the growth of these seedlings which was not related to K uptake. Seedlings from the limed soil, on the other hand, had similar foliar K content when grown with either biotite or KCl as K source. The larger uptake of K in seedlings from untreated forest soil was not an effect of a more developed EM colonisation of the roots since seedlings from the limed soil had a higher ergosterol concentration both in the soil and in the roots. Nutrient regimes had no significant influence on the total uptake of K but the 87Sr/ 86Sr isotope ratio in the plant biomass indicated that seedlings grown with excess nitrogen supply had taken up proportionally less Sr from the biotite (1.8% of total Sr content) compared to seedlings grown with a moderate nitrogen supply (5.0%). Furthermore, seedlings grown with excess nitrogen supply had a reduced fungal colonisation of roots and soil and bacterial activity was lower in these soils. The 87Sr/ 86Sr ratio in the plant biomass was positively correlated with fungal colonisation of the roots (r 2=0.98), which may indicate that the fungus was involved in releasing Sr from the biotite. Uptake of K from biotite was not related to the amount of organic acids in the soil solution. Oxalic acid was positively related to the amount of ergosterol in the root, suggesting that oxalic acid in the soil solution originates from the EM symbionts. The accuracy of the estimations of biotite weathering based on K uptake by the seedlings in comparison with the 87Sr/86Sr isotope ratio measured in the shoots is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
In this study we validated marking offspring through peritoneal injection of ripe females using two concentrations of strontium (strontium chloride hexahydrate). Larvae from treatments were monitored for condition morphometrics and tested for chemical mark incorporation in their otoliths via laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) to quantify the strontium concentration (Sr/Ca) and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) to measure the strontium isotope ratios (87Sr:86Sr) of otoliths. Otolith strontium concentrations and strontium isotopes ratios were elevated in the high-concentration treatment, while the low-concentration and control treatments were not significantly different from each other. Larval size and eye diameter at hatch were similar among treatments; however, yolk and oil globule diameters were significantly reduced in the high-concentration treatment. Moreover, growth rates after 60?days post-hatch were significantly reduced in the high-concentration treatment relative to the low-concentration and control treatments, suggesting trans-generational tagging can have deleterious effects on offspring. Our study provides evidence for the efficacy of artificially marking offspring via injection of strontium into ripe females and could provide new tools for managing endangered fish populations; however, careful consideration of chemical concentrations and dosages may be required prior to its application in a fisheries management experiment.  相似文献   

19.
Nitrogen (N) is a critical limiting nutrient that regulates plant productivity and the cycling of other essential elements in forests. We measured foliar and soil nutrients in 22 young Douglas-fir stands in the Oregon Coast Range to examine patterns of nutrient availability across a gradient of N-poor to N-rich soils. N in surface mineral soil ranged from 0.15 to 1.05% N, and was positively related to a doubling of foliar N across sites. Foliar N in half of the sites exceeded 1.4% N, which is considered above the threshold of N-limitation in coastal Oregon Douglas-fir. Available nitrate increased five-fold across this gradient, whereas exchangeable magnesium (Mg) and calcium (Ca) in soils declined, suggesting that nitrate leaching influences base cation availability more than soil parent material across our sites. Natural abundance strontium isotopes (87Sr/86Sr) of a single site indicated that 97% of available base cations can originate from atmospheric inputs of marine aerosols, with negligible contributions from weathering. Low annual inputs of Ca relative to Douglas-fir growth requirements may explain why foliar Ca concentrations are highly sensitive to variations in soil Ca across our sites. Natural abundance calcium isotopes (δ44Ca) in exchangeable and acid leachable pools of surface soil measured at a single site showed 1 per mil depletion relative to deep soil, suggesting strong Ca recycling to meet tree demands. Overall, the biogeochemical response of these Douglas-fir forests to gradients in soil N is similar to changes associated with chronic N deposition in more polluted temperate regions, and raises the possibility that Ca may be deficient on excessively N-rich sites. We conclude that wide gradients in soil N can drive non-linear changes in base-cation biogeochemistry, particularly as forests cross a threshold from N-limitation to N-saturation. The most acute changes may occur in forests where base cations are derived principally from atmospheric inputs.  相似文献   

20.
《Geobios》2016,49(5):349-354
87Sr/86Sr values from otoliths of the worldwide-distributed fish Hygophum hygomii are used for the purpose of isotope chemostratigraphy. In order to evaluate the potential of Hhygomii otoliths for strontium (Sr) isotopic studies, we first compare the 87Sr/86Sr ratio of current representatives of the species with that of modern sea water. Then, three fossil otoliths of Hhygomii collected in middle Miocene sediments of the Aquitaine Basin (Lafaurie locality, SW France) and the Carpathian Foredeep of the Central Paratethys (Brno-Kralovo Pole locality, SE Czech Republic) are analysed. The age inferred from the 87Sr/86Sr ratio at Lafaurie places the two analysed otoliths within the time interval of 15.5–15.1 Ma. This time interval matches the published early Langhian age obtained from the 87Sr/86Sr ratio of bivalves measured at the same locality. At the Brno-Kralovo Pole, the 87Sr/86Sr ratio of the analysed otolith returns a wider timespan of 14.78–13.10 Ma, falling into an interval of poor time resolution of the 87Sr/86Sr chemostratigraphy. Comparisons with published biostratigraphic and paleoclimatic data suggest that the analysed fossil otoliths of Hhygomii were mineralized during the late part of the Langhian, at ∼14.2 Ma. This work represents a first attempt to use otoliths for 87Sr/86Sr chemostratigraphy, and indicates that such a use may represent a powerful tool for testing stratigraphic correlations in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号