首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motor end-plate disease (med) in the mouse is an hereditary defect of the neuromuscular system, with partial functional denervation and muscle inactivity in late stages of the disease. Motor end-plate disease is characterized by an intense ultraterminal sprouting of the motor nerves from swollen nerve terminal branches in the soleus muscle. At the ultrastructural level, the neuromuscular junctions extend to very wide territories, often outside the original motor end-plate, in regions where the nerve sprouts are in simple apposition to the muscle fiber, with no secondary synaptic folds. The nerve terminals are rich in neurofilaments and poor in synaptic vesicles.Freeze fracture analysis of the pre-synaptic and post-synaptic membrane specializations fails to reveal any important structural alteration which could suggest a defect in acetylcholine release or in muscle membrane excitability. However, the non-junctional sarcolemmal specializations (the so-called ‘square arrays’) arc found with a frequency slightly higher than in normal muscle.The nerve abnormalities at the neuromuscular junction may be either a consequence of muscle inactivity or the morphological expression of some primary nerve abnormality. Further studies of the soleus muscle at early stages of the disease may provide evidence in favor of either possibility.  相似文献   

2.
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to α-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.  相似文献   

3.
IT is generally accepted that botulinum toxin entirely blocks transmitter release from motor nerve terminals without affecting nerve conduction or the sensitivity of the muscle membrane to acetylcholine. In particular, it has been reported that with both acute and chronic intoxication with type A botulinum, miniature end-plate potentials (m.e.p.p.s.) disappear completely from a muscle at about the time that transmission is blocked1,2. The action of botulinum toxin has been reinvestigated following acute application of toxin to the rat diaphragm in vitro and chronic paralysis of rat soleus muscle following a single intramuscular injection of toxin; miniature potentials have been observed to persist following blockade of neuromuscular transmission.  相似文献   

4.
To test the hypothesis that synaptic basal lamina can induce synapse-specific expression of acetylcholine receptor (AChR) genes, we examined the levels mRNA for the alpha- and epsilon-subunits of the AChR in regenerating rat soleus muscles up to 17 days of regeneration. Following destruction of all muscle fibres and their nuclei by exposure to venom of the Australian tiger snake, new fibres regenerated within the original basal lamina sheaths. Northern blots showed that original mRNA was lost during degeneration. Early in regeneration, both alpha- and epsilon-subunit mRNAs were present throughout the muscle fibres but in situ hybridization showed them to be concentrated primarily at original synaptic sites, even when the nerve was absent during regeneration. A similar concentration was seen in denervated regenerating muscles kept active by electrical stimulation and in muscles frozen 41-44 hours after venom injection to destroy all cells in the synaptic region of the muscle. Acetylcholine-gated ion channels with properties similar to those at normal neuromuscular junctions were concentrated at original synaptic sites on denervated stimulated muscles. Taken together, these findings provide strong evidence that factors that induce the synapse-specific expression of AChR genes are stably bound to synaptic basal lamina.  相似文献   

5.
Toxin-L a lethal neuromuscular blocking agent was isolated from the venom of the scorpion, Lychas laevifrons (Pocock), by the CM-cellulose ion-exchange chromatography. It was a homogenous, thermolabile and low molecular weight protein. The toxin produced irreversible blockade of indirect stimulation induced twitch responses on innervated rat phrenic nerve-diaphragm and chick biventer cervicis preparation. The toxin did not produce any contractile response on toad rectus abdominis muscle preparation. On chronically denervated rat diaphragm, the toxin failed to alter the responses induced by direct stimulation, exogenous acetylcholine, potassium chloride and caffeine. Acetylcholine and carbachol induced contractions on isolated chick biventer cervicis remained unaltered by the toxin. Neostigmine failed to alter toxin induced neuromuscular blockade on innervated rat diaphragm. The toxin released a significant amount of acetylcholine from innervated rat diaphragm. It may be concluded that the toxin acts presynaptically through the release of acetylcholine, thereby producing neuromuscular blockade.  相似文献   

6.
The rat diaphragm has been used to investigate the neuromuscular blocking action of acetylcholine mustard which yields a potent nicotinic agonist, an aziridinium ion, in aqueous medium. Evidence was obtained that the acetylcholine mustard aziridinium ion impaired neuromuscular activity when the phrenic nerve was stimulated and that the ion did not directly inhibit muscle contraction. Impairment of neuromuscular activity was characterized by a latent period and depended both on the concentration of aziridinium ion and the frequency of stimulation of the phrenic nerve. Elevated concentrations of Ca-2+ and choline changed the response of the rat diaphragm to the aziridinium ion, the former increasing the rate of development of neuromuscular block and the latter protecting against neuromuscular block. These results indicated that the aziridinium ion may act either at the site of choline uptake or have an effect on acetylcholine synthesis in the nerve ending and that impairment of neuromuscular transmission in the rat diaphragm involved the availability of acetylcholine. Similar results were obtained with acetylcholine mustard aziridinium ion subjected to alkaline hydrolysis. This substance is thought to be choline mustard aziridinium ion. Although difficult to prove with the rat diaphragm it is possible that acetylcholinesterase of this preparation could hydrolyze acetylcholine mustard aziridinium ion at the neurotransmitter site and the resultant choline mustard aziridinium ion would interfere with the uptake of choline and eventually prevent neuromuscular transmission. This hemicholinium-like hypothesis for the mechanism of action of choline mustard aziridinium ion is compatible with reported date for toxicity of acetylcholine mustard aziridinium ion in the mouse.  相似文献   

7.
In experiments on neuromuscular junctions of fast (m. extensor digitorum longus, EDL) and slow (m. soleus) muscles of rats under hindlimb unloading of varied duration, we compared the intensity of spontaneous quantal secretion of neurotransmitter in response to potassium depolarization and activation of presynaptic cholinoreceptors with a nonhydrolyzable acetylcholine analog. Secretion was assessed by the mean frequency of miniature endplate potentials. In the controls, carbachol raised this index by 363% in EDL and by 62% in soleus. Secretion in the fast muscle was also more sensitive to [K+]. Hindlimb unloading abolished the sensitivity to carbachol in EDL while in soleus it did not change. Preservation of the sensitivity of the fast muscle to potassium depolarization suggested that unloading reduced the number of functional presynaptic receptors.  相似文献   

8.
In experiments on neuromuscular synapses of rat fast (m. Extensor digitorum longus, EDL) and slow (m. soleus) skeletal muscles, changes in the intensity of spontaneous quantal mediator secretion in response to the activation of presynaptic cholinoreceptors by the nonhydrolyzable acetylcholine analogue carbachol and to an increase in K+ concentration in the control group of animals and in animals subjected to different terms of unloading of hindlimbs have been compared. The intensity of spontaneous secretion of mediator quanta was evaluated from the mean frequency of miniature endplate potentials. In the control group of animals, the frequency of miniature endplate potentials by the action of carbachol increased by 363% in m. EDL and by 62% in m. soleus. The frequency of miniature endplate potentials in the synapses of m. EDL was more sensitive to K(+)-induced depolarization too. The bearing unloading of hindlimbs abolished the sensitivity of spontaneous secretion to carbachol in the synapses of m. EDL, whereas in m. soleus it was unchanged. However, the preservation of sensitivity of nerve endings of fast muscle to K(+)-induced depolarization allows one to assume that the hindlimb unloading leads to a decrease in the number of functioning presynaptic receptors.  相似文献   

9.
A beta-bungarotoxin was isolated from the venom of Bungarus multicinctus by column chromatography on Sephadex G-50 and SP-Sephadex. The toxin produced presynaptic effects on neuromuscular transmission with characteristics similar to those described by others. In a sympathetic ganglion, the toxin increased spontaneous acetylcholine (ACh) release and decreased ACh release evoked by preganglionic nerve stimulation. The toxin did not block the response of isolated ileum to cholinergic nerve stimulation, did not block the release of noradrenaline from the adrenergic nerve terminals of a nictitating membrane preparation, and did not alter the responses of smooth and cardiac muscle preparations to noradrenaline. It is suggested that the specificity of beta-bungarotoxin for certain nerve terminals is related either to selective binding of the toxin or to the selective presence of a necessary substrate for its action. An attempt to show selective binding of 125I-toxin to cholinergic nerve terminals in skeletal muscle was not successful.  相似文献   

10.
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre- and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR gamma-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distribution of acetylcholinesterase (AChE) and rapsyn. However, clustering of muscle specific kinase (MuSK) proceeded normally in the gamma-null muscles. AChR clusters emerged at later stages owing to the expression of the AChR epsilon-subunit, but these delayed AChR clusters were broadly distributed and appeared at lower level compared with the wild-type muscles. Interestingly, despite the abnormal pattern, synaptic vesicle proteins were progressively accumulated at individual nerve terminals, and neuromuscular synapses were ultimately established in gamma-null muscles. These results demonstrate that the gamma-subunit is required for the formation of pre-patterned AChR clusters, which in turn play an essential role in determining the subsequent pattern of neuromuscular synaptogenesis.  相似文献   

11.
1. The administration of crude venom of the parotoid glands of the toad Bufo ictericus ictericus to the in situ (via abdominal vein) or isolated heart of this anuran causes both chronotropic and inotropic effects. 2. While under action of parotoid venom, the heart of the animal is insensitive to vagus nerve stimulation. 3. This blocking of vagal action is dose dependent and it is suggested that it results from a functional antagonism between the venom constituents and the acetylcholine liberated by the nerve endings on stimulation. 4. The venom constituents probably involved in this antagonism are catecholamines (adrenaline and noradrenaline), tryptamine derivatives (serotonin and bufotenidin) and genins (bufagin and bufotoxin), possibly also ATP. 5. Adrenaline, noradrenaline and serotonin, or a mixture of the three, mimic, at least partially, the blocking of vagal action caused by crude venom. 6. The blocking action of crude venom can be prevented by previously or simultaneously adding acetylcholine to the infused crude venom. This prevention is dose dependent. 7. The blocking action persists in the boiled venom and in the material dialysed from crude venom.  相似文献   

12.
Sensitivity of the postsynaptic chemoreceptive membrane of the frog sartorius muscle fiber to acetylcholine was studied during the development of a block to neuromuscular transmission in the course of prolonged indirect low-frequency stimulation. Calculation of the mean amplitude of miniature end-plate potentials, measurement of the input resistance of the electrogenic membrane of the muscle fiber, and application of acetylcholine to the postsynaptic membrane showed that sensitivity of the postsynaptic membrane to mediator is unchanged at the time of onset of the neuromuscular block. A decrease in amplitude of the end-plate potentials during development of fatigue is due to a reduction in their quantum composition, consequent upon negative antidromic influences from the muscle on motor nerve endings, with the participation of chemical agents formed in the muscle during the activity of its contractile system.  相似文献   

13.
《Journal of Physiology》1998,92(3-4):195-198
The functional integrity of the neuromuscular synapse requires that sufficient numbers of acetylcholinesterase (AChE) molecules be localized on the specialized extracellular matrix between the nerve terminal and the post-synaptic membrane. Multiple interrelated levels of regulation are necessary to accomplish this complex task including the spatial and temporal restriction of AChE mRNA expression within the muscle fiber, local translation and assembly of AChE polypeptides, and focused accumulation of AChE molecules on the extracellular matrix. This is accomplished in part through the organization of other extracellular matrix molecules into a complex which further associates with acetylcholine receptors and their accompanying molecules. Finally, the mature neuromuscular junction contains molecules which can act as receptors for the attachment of AChE which in turn may allow for the turnover of this enzyme at the synapse. This brief review will focus mainly on contributions from our laboratory towards understanding the mechanisms involved in organizing AChE molecules at the neuromuscular synapse.  相似文献   

14.
1. A lethal neurotoxin (acanthophin d) was isolated from the venom of the Australian death adder snake Acanthophis antarcticus. 2. Acanthophin d consisted of a single polypeptide chain of 74 amino acid residues cross-linked by five disulphide bridges. 3. The results of neurophysiological experiments on murine phrenic nerve hemi-diaphragm preparations were consistent with irreversible post-synaptic blockage of neuromuscular transmission by acanthophin d.  相似文献   

15.
Rat motor nerve terminals and the endplates they interact with exhibit changes to varying patterns of use, as when exposed to increased activation in the form of endurance exercise training. The extent to which these changes affect neuromuscular transmission efficacy is uncertain. In this study, the effects of habitual exercise on the electrophysiological properties of neuromuscular transmission in rat soleus muscle were investigated using a novel in situ approach. Consistent with previous reports, miniature endplate potential frequency was enhanced by habitual exercise. Other passive properties, such as resting membrane potential, miniature endplate potential amplitude, and "giant" miniature endplate potential characteristics were unaltered by the training program. Full-size endplate potentials were obtained by blocking soleus muscle action potentials with mu-conotoxin GIIIb. Quantal content values were 91.5 and 119.9 for control and active groups, respectively (P < 0.01). We also measured the rate and extent of endplate potential amplitude rundown during 3-s trains of continuous stimulation at 25, 50, and 75 Hz; at 50 and 75 Hz, we found both the rate and extent of rundown to be significantly attenuated (10--20%) in a specific population of cells from active rats (P < 0.05). The results establish the degree of activity-dependent plasticity as it pertains to neuromuscular transmission in a mammalian slow-twitch muscle.  相似文献   

16.
17.
A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development.  相似文献   

18.
Although acetylcholinesterase (AChE) knockout mice survive, they have abnormal neuromuscular function. We analysed further the effects of the mutation on hind limb muscle contractile properties. Tibialis anterior muscle from AChE KO mice is unable to maintain tension during a short period of repetitive nerve stimulation (tetanic fade) and has an increased twitch tension in response to a single nerve electric stimulation. In response to direct muscle stimulation, we found that maximal velocity of shortening of soleus muscle is increased and maximum tetanic force is decreased in AchE KO mice versus control animals. As the contractile properties of the soleus muscle were altered by AChE ablation, our results suggest cellular and molecular changes in AChE ablated muscle containing both fast and slow muscle fibres.  相似文献   

19.
Experiments on rats were made to study the effect of cytostatics on the rest membrane potentials (RMP) of muscle fibres and chemosensitivity of the botulinum toxin (BT) poisoned m. soleus. Intramuscular injection of the sublethal dose of BT on the 5th day evoked the blockade of the synaptic neuromuscular transmission, depolarization of the muscle cells and the decreased sensitivity to acetylcholine. Daily intraperitoneal injections of vincristine (25 micrograms/100 g) and fluorouracil (5 mg/100 g) to rats did not affect the development of the neuromuscular transmission blockade induced by BT. The cytostatics did not change the RMP of the myocytes or chemosensitivity of the normal muscles. However, both the drugs prevented the depolarization of myocytes and the decreased chemosensitivity of the muscles paralyzed with BT. It is assumed that the delayed appearance of the cytostatic-induced denervation is a consequence of the suppressed division of the satellite cells.  相似文献   

20.
Nerve-Muscle Interaction In Vitro : Role of acetylcholine   总被引:15,自引:0,他引:15       下载免费PDF全文
Nerve and muscle cells from clonal lines interact in vitro, resulting in the association on the muscle surface of an area of increased acetylcholine sensitivity with a site of nerve-muscle contact. This localization of acetylcholine sensitivity on the muscle cell to a site of contact between nerve and muscle was found to occur when acetylcholine receptors on the muscle had been blocked with α-neurotoxin. Localization was also found to occur when the nerve cell had been prevented from releasing acetylcholine. It is concluded that neither the presence of active acetylcholine receptors on the muscle, nor the release of acetylcholine from the nerve, was required for the events leading to the localization of acetylcholine sensitivity in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号