首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Tetraethylammonium ion (TEA+) blocks voltage-gated K+ channels by acting at two sites located at opposite ends of the aqueous pore. This allowed us to test two predictions made by models of ion permeation, namely that K+ channels can be simultaneously occupied by multiple ions and that the ions repel each other. We show that externally applied TEA+ antagonize block by internal TEA+ and vice versa. The antagonism is less than predicted for competitive binding, hence TEA+ may occupy both sites simultaneously. External TEA+ and internal TEA+ reduce each others affinity 4- to 5-fold. In addition, K+ antagonizes block by TEA+ at the opposite side of the membrane, and external TEA+ antagonizes is block by internal Ba2+. The antagonism between ions applied at opposite sides of the membrane may be common to all cations binding to K+ channels.  相似文献   

2.
Ion permeation and selectivity, key features in ion channel function, are believed to arise from a complex ensemble of energetic and kinetic variables. Here we evaluate the contribution of pore cation binding to ion permeation and selectivity features of KcsA, a model potassium channel. For this, we used E71A and M96V KcsA mutants in which the equilibrium between conductive and nonconductive conformations of the channel is differently shifted. E71A KcsA is a noninactivating channel mutant. Binding of K(+) to this mutant reveals a single set of low-affinity K(+) binding sites, similar to that seen in the binding of K(+) to wild-type KcsA that produces a conductive, low-affinity complex. This seems consistent with the observed K(+) permeation in E71A. Nonetheless, the E71A mutant retains K(+) selectivity, which cannot be explained on the basis of just its low affinity for this ion. At variance, M96V KcsA is a rapidly inactivating mutant that has lost selectivity for K(+) and also conducts Na(+). Here, low-affinity binding and high-affinity binding of both cations are detected, seemingly in agreement with both being permeating species in this mutant channel. In conclusion, binding of the ion to the channel protein seemingly explains certain gating, ion selectivity, and permeation properties. Ion binding stabilizes greatly the channel and, depending upon ion type and concentration, leads to different conformations and ion binding affinities. High-affinity states guarantee binding of specific ions and mediate ion selectivity but are nonconductive. Conversely, low-affinity states would not discriminate well among different ions but allow permeation to occur.  相似文献   

3.
Acid sensing ion channels (ASICs) are cation-selective membrane channels activated by H+ binding upon decrease in extracellular pH. It is known that Ca2+ plays an important modulatory role in ASIC gating, competing with the ligand (H+) for its binding site(s). However, the H+ or Ca2+ binding sites involved in gating and the gating mechanism are not fully known. We carried out a computational study to investigate potential cation and H+ binding sites for ASIC1 via all-atom molecular dynamics simulations on five systems. The systems were designed to test the candidacy of some acid sensing residues proposed from experiment and to determine yet unknown ligand binding sites. The ion binding patterns reveal sites of cation (Na+ and Ca2+) localization where they may compete with protons and influence channel gating. The highest incidence of Ca2+ and Na+ binding is observed at a highly acidic pocket on the protein surface. Also, Na+ ions fill in an inner chamber that contains a ring of acidic residues and that is near the channel entrance; this site could possibly be a temporary reservoir involved in ion permeation. Some acidic residues were observed to orient and move significantly close together to bind Ca2+, indicating the structural consequences of Ca2+ release from these sites. Local structural changes in the protein due to cation binding or ligand binding (protonation) are examined at the binding sites and discussed. This study provides structural and dynamic details to test hypotheses for the role of Ca2+ and Na+ ions in the channel gating mechanism.  相似文献   

4.
Tuning ion coordination architectures to enable selective partitioning   总被引:1,自引:0,他引:1  
Varma S  Rempe SB 《Biophysical journal》2007,93(4):1093-1099
K+ ions seemingly permeate K-channels rapidly because channel binding sites mimic coordination of K+ ions in water. Highly selective ion discrimination should occur when binding sites form rigid cavities that match K+, but not the smaller Na+, ion size or when binding sites are composed of specific chemical groups. Although conceptually attractive, these views cannot account for critical observations: 1), K+ hydration structures differ markedly from channel binding sites; 2), channel thermal fluctuations can obscure sub-Angstr?m differences in ion sizes; and 3), chemically identical binding sites can exhibit diverse ion selectivities. Our quantum mechanical studies lead to a novel paradigm that reconciles these observations. We find that K-channels utilize a "phase-activated" mechanism where the local environment around the binding sites is tuned to sustain high coordination numbers (>6) around K+ ions, which otherwise are rarely observed in liquid water. When combined with the field strength of carbonyl ligands, such high coordinations create the electrical scenario necessary for rapid and selective K+ partitioning. Specific perturbations to the local binding site environment with respect to strongly selective K-channels result in altered K+/Na+ selectivities.  相似文献   

5.
The patch-clamp technique is used to investigate divalent ion block of the large-conductance K+ channel from Chara australis. Block by Ba2+, Ca2+, Mg2+, and Pt(NH3)4(2+) from the vacuolar and cytoplasmic sides is used to probe the structure of, and ion interactions within, the pore. Five divalent ion binding sites are detected. Vacuolar Ca2+ reduces channel conductance by binding to a site located 7% along the membrane potential difference (site 1, delta = 0.07; from the vacuolar side); it also causes channel closures with mean a duration of approximately 0.1-1 ms by binding at a deeper site (site 2, delta = 0.3). Ca2+ can exit from site 2 into both the vacuolar and cytoplasmic solutions. Cytoplasmic Ca2+ reduces conductance by binding at two sites (site 3, delta = -0.21; site 4, delta = -0.6; from the cytoplasmic side) and causes closures with a mean duration of 10-100 ms by binding to site 5 (delta = -0.7). The deep sites exhibit stronger ion specificity than the superficial sites. Cytoplasmic Ca2+ binds sequentially to sites 3-5 and Ca2+ at site 5 can be locked into the pore by a second Ca2+ at site 3 or 4. Ca2+ block is alleviated by increasing [K+] on the same side of the channel. Further, Ca2+ occupancy of the deep sites (2, 4, and 5) is reduced by K+, Rb+, NH4+, and Na+ on the opposite side of the pore. Their relative efficacy correlates with their relative permeability in the channel. While some Ca2+ and K+ sites compete for ions, Ca2+ and K+ can simultaneously occupy the channel. Ca2+ binding at site 1 only partially blocks channel conduction. The results suggest the presence of four K+ binding sites on the channel protein. One cytoplasmic facing site has an equilibrium affinity of 10 mM (site 6, delta = -0.3) and one vacuolar site (site 7, delta less than 0.2) has low affinity (greater than 500 mM). Divalent ion block of the Chara channel shows many similarities to that of the maxi-K channel from rat skeletal muscle.  相似文献   

6.
Identification of mixed di-cation forms of G-quadruplex in solution   总被引:1,自引:1,他引:0  
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of 15NH4+ ions uncovered a mixed mono-K+-mono-15NH4+ form that represents intermediate in the conversion of di-15NH4+ into di-K+ form. Analogously, 15NH4+ ions were found to replace Na+ ions inside d(G3T4G4)2 quadruplex. The preference of 15NH4+ over Na+ ions for the two binding sites is considerably smaller than the preference of K+ over 15NH4+ ions. The two cation binding sites within the G-quadruplex core differ to such a degree that 15NH4+ ions bound to the site, which is closer to the edge-type loop, are always replaced first during titration by K+ ions. The second binding site is not taken up by K+ ion until K+ ion already resides at the first binding site. Quantitative analysis of concentrations of the three di-cation forms, which are in slow exchange on the NMR time scale, at 12 K+ ion concentrations afforded equilibrium binding constants. K+ ion binding to sites U and L within d(G3T4G4)2 is more favorable with respect to 15NH4+ ions by Gibbs free energies of approximately -24 and -18 kJ mol(-1) which includes differences in cation dehydration energies, respectively.  相似文献   

7.
In voltage-gated ion channels, residues responsible for ion selectivity were identified in the pore-lining SS1-SS2 segments. Negatively charged glutamate residues (E393, E736, E1145, and E1446) found in each of the four repeats of the alpha 1C subunit were identified as the major determinant of selectivity in Ca2+ channels. Neutralization of glutamate residues by glutamine in repeat I (E393Q), repeat III (E1145Q), and repeat IV (E1446Q) decreased the channel affinity for calcium ions 10-fold from the wild-type channel. In contrast, neutralization of glutamate residues in repeat II failed to significantly alter Ca2+ affinity. Likewise, mutation of neighboring residues in E1149K and D1450N did not affect the channel affinity, further supporting the unique role of glutamate residues E1145 in repeat III and E1446 in repeat IV in determining Ca2+ selectivity. Conservative mutations E1145D and E1446D preserved high-affinity Ca2+ binding, which suggests that the interaction between Ca2+ and the pore ligand sites is predominantly electrostatic and involves charge neutralization. Mutational analysis of E1446 showed additionally that polar residues could achieve higher Ca2+ affinity than small hydrophobic residues could. The role of high-affinity calcium binding sites in channel permeation was investigated at the single-channel level. Neutralization of glutamate residue in repeats I, II, and III did not affect single-channel properties measured with 115 mM BaCl2. However, mutation of the high-affinity binding site E1446 was found to significantly affect the single-channel conductance for Ba2+ and Li+, providing strong evidence that E1446 is located in the narrow region of the channel outer mouth. Side-chain substitutions at 1446 in repeat IV were used to probe the nature of divalent cation-ligand interaction and monovalent cation-ligand interaction in the calcium channel pore. Monovalent permeation was found to be inversely proportional to the volume of the side chain at position 1446, with small neutral residues such as alanine and glycine producing higher Li+ currents than the wild-type channel. This suggests that steric hindrance is a major determinant for monovalent cation conductance. Divalent permeation was more complex. Ba2+ single-channel conductance decreased when small neutral residues such as glycine were replaced by bulkier ones such as glutamine. However, negatively charged amino acids produced single-channel conductance higher than predicted from the size of their side chain. Hence, negatively charged residues at position 1446 in repeat IV are required for divalent cation permeation.  相似文献   

8.
Single channel and whole cell recordings were used to study ion permeation through Ca channels in isolated ventricular heart cells of guinea pigs. We evaluated the permeability to various divalent and monovalent cations in two ways, by measuring either unitary current amplitude or reversal potential (Erev). According to whole cell measurements of Erev, the relative permeability sequence is Ca2+ greater than Sr2+ greater than Ba2+ for divalent ions; Mg2+ is not measurably permeant. Monovalent ions follow the sequence Li+ greater than Na+ greater than K+ greater than Cs+, and are much less permeant than the divalents. These whole cell measurements were supported by single channel recordings, which showed clear outward currents through single Ca channels at strong depolarizations, similar values of Erev, and similar inflections in the current-voltage relation near Erev. Information from Erev measurements stands in contrast to estimates of open channel flux or single channel conductance, which give the sequence Na+ (85 pS) greater than Li+ (45 pS) greater than Ba2+ (20 pS) greater than Ca2+ (9 pS) near 0 mV with 110-150 mM charge carrier. Thus, ions with a higher permeability, judged by Erev, have lower ion transfer rates. In another comparison, whole cell Na currents through Ca channels are halved by less than 2 microM [Ca]o, but greater than 10 mM [Ca]o is required to produce half-maximal unitary Ca current. All of these observations seem consistent with a recent hypothesis for the mechanism of Ca channel permeation, which proposes that: ions pass through the pore in single file, interacting with multiple binding sites along the way; selectivity is largely determined by ion affinity to the binding sites rather than by exclusion by a selectivity filter; occupancy by only one Ca ion is sufficient to block the pore's high conductance for monovalent ions like Na+; rapid permeation by Ca ions depends upon double occupancy, which only becomes significant at millimolar [Ca]o, because of electrostatic repulsion or some other interaction between ions; and once double occupancy occurs, the ion-ion interaction helps promote a quick exit of Ca ions from the pore into the cell.  相似文献   

9.
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G7) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of approximately 1.5 A from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.  相似文献   

10.
K+ channels can be occupied by multiple permeant ions that appear to bind at discrete locations in the conduction pathway. Neither the molecular nature of the binding sites nor their relation to the activation or inactivation gates that control ion flow are well understood. We used the permeant ion Ba2+ as a K+ analog to probe for K+ ion binding sites and their relationship to the activation and inactivation gates. Our data are consistent with the existence of three single-file permeant-ion binding sites: one deep site, which binds Ba2+ with high affinity, and two more external sites whose occupancy influences Ba2+ movement to and from the deep site. All three sites are accessible to the external solution in channels with a closed activation gate, and the deep site lies between the activation gate and the C-type inactivation gate. We identify mutations in the P-region that disrupt two of the binding sites, as well as an energy barrier between the sites that may be part of the selectivity filter.  相似文献   

11.
Characteristics of cation permeation through voltage-dependent delayed rectifier K channels in squid giant axons were examined. Axial wire voltage-clamp measurements and internal perfusion were used to determine conductance and permeability properties. These K channels exhibit conductance saturation and decline with increases in symmetrical K+ concentrations to 3 M. They also produce ion- and concentration-dependent current-voltage shapes. K channel permeability ratios obtained with substitutions of internal Rb+ or NH+4 for K+ are higher than for external substitution of these ions. Furthermore, conductance and permeability ratios of NH+4 or Rb+ to K+ are functions of ion concentration. Conductance measurements also reveal the presence of an anomalous mole fraction effect for NH+4, Rb+, or Tl+ to K+. Finally, internal Cs+ blocks these K channels in a voltage-dependent manner, with relief of block by elevations in external K+ but not external NH+4 or Cs+. Energy profiles for K+, NH+4, Rb+, Tl+, and Cs+ incorporating three barriers and two ion-binding sites are fitted to the data. The profiles are asymmetric with respect to the center of the electric field, have different binding energies and electrical positions for each ion, and (for K+) exhibit concentration-dependent barrier positions.  相似文献   

12.
Charybdotoxin (ChTX), a potent peptidyl inhibitor of several types of K+ channels, binds to sites in vascular smooth muscle sarcolemma (Vázquez, J., Feigenbaum, P., Katz, G. M., King, V. F., Reuben, J. P., Roy-Contancin, L., Slaughter, R. S., Kaczorowski, G. J., and Garcia, M. L. (1989) J. Biol. Chem. 265, 20902-20909) which are functionally associated with a high conductance Ca2(+)-activated K+ channel (PK,Ca). 125I-ChTX also binds specifically and reversibly to a single class of sites in plasma membranes prepared from rat brain synaptosomes. These sites exhibit a Kd of 25-30 pM, as measured by either equilibrium or kinetic binding protocols and display a maximum density of about 0.3-0.5 pmol/mg of protein. Competition studies with native ChTX yield a Ki of 8 pM for the noniodinated toxin. The highest density of ChTX sites exists in vesicle fractions of plasma membrane origin. Binding of 125I-ChTX is modulated by metal ions that interact with K+ channels: Ba2+, Ca2+, and Cs+ cause inhibition of ChTX binding; Na+ and K+ stimulate binding at low concentration before producing complete inhibition as their concentration is increased. Stimulation of binding is due to an allosteric interaction that decreases Kd whereas inhibition results from an ionic strength effect. Tetraethylammonium ion has no effect on binding, but tetrabutylammonium ion blocks binding with a Ki of 2.5 mM. Different toxins (i.e. alpha-dendrotoxin, noxiustoxin) that inhibit an inactivating, voltage-dependent K+ channel (PK,V) block 125I-ChTX binding in brain. In marked contrast, iberiotoxin, a selective inhibitor of PK,Ca, has no effect on ChTX binding in this preparation. Inhibition of ChTX binding by alpha-dendrotoxin and noxiustoxin results from an allosteric interaction between separate binding sites for these agents and the ChTX receptor. Taken together, these results suggest that the ChTX sites present in brain are associated with PK,V rather than with PK,Ca. Therefore, 125I-ChTX is a useful probe for elucidating the biochemical properties of a number of different types of K+ channels.  相似文献   

13.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

14.
Charybdotoxin (ChTX) inhibits with high affinity a voltage-gated K+ channel that is present in human T lymphocytes. In this system, 125I-ChTX binds specifically and reversibly to a single class of sites which display a Kd of 8-14 pM, as measured by either equilibrium or kinetic binding protocols. The maximum density of sites, 542 sites/cell, correlates well with the density of K+ channel as determined by electrophysiological experiments. Binding of 125I-ChTX is modulated by the ionic strength of the incubation media and by Ca2+. Increasing concentrations of either K+, Na+, or Ca2+ cause inhibition of toxin binding. Inhibition of binding by Ca2+ is due, primarily, to an effect on toxin dissociation rates. Increasing the pH of the external media from 6.8 to 8.5 enhances toxin binding, due to an increase in affinity with no significant effect on the maximum density of receptor sites. Different agents that block the voltage-gated K+ channel in human T lymphocytes, inhibit toxin binding. Mitogen-stimulated T cells display 2.5-3-fold increase in toxin binding as compared with unstimulated control cells. These data, taken together, suggest that 125I-ChTX binding sites identified in this study, represent the predominant voltage-gated K+ channel present in peripheral human T lymphocytes. Therefore, 125I-ChTX is a useful probe for elucidating the physiological role of this type of K+ channel.  相似文献   

15.
The interaction of 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) with the renal (Na+ + K+)-ATPase, the sarcoplasmic reticulum Ca-transport ATPase, and the gastric (H+ + K+)-ATPase has been investigated in order to determine whether BzATP is a suitable probe for the labeling and identification of a peptide from the ATP binding sites of these ion pumps. After ultraviolet irradiation BzATP inhibited the enzymatic hydrolysis of ATP by each of the ion pumps, and also was covalently incorporated into the 100 000 dalton polypeptides of each protein. The presence of excess ATP in the reaction solution did not prevent either the inactivation of ATPase activity or the labeling of the catalytic polypeptides by BzATP. Prior modification of the ATPases with fluorescein-5'-isothiocyanate (FITC), however, prevented much of the labeling of the 100 000 dalton polypeptides by BzATP. BzATP competitively inhibited the high-affinity binding of ATP to the ion pumps, but ATP did not block the high-affinity binding of BzATP by the enzymes. BzATP binds to the membrane-bound ATPases at a high-affinity site with a Kd of 0.8-1.2 microM and a Bmax of 2-3 nmol/mg, and also binds to at least one low-affinity, high-capacity site on the membranes. HPLC separation of the soluble peptides from a tryptic digest of BzATP-labeled (Na+ + K+)-ATPase revealed the presence of several labeled peptides, none of which was protected by either ATP or FITC. Although BzATP can displace ATP from a high-affinity binding site on the ion pumps, it appears, therefore, that inactivation of enzymatic activity is the result of reactions between BzATP and the proteins at locations outside this site. Thus, it is concluded from these experiments that BzATP is not likely to be a useful probe for the ATP binding sites on the ion transport ATPases.  相似文献   

16.
Binding of K+ and Na+ to the potassium channel KcsA has been characterized from the stabilization observed in the heat-induced denaturation of the protein as the ion concentration is increased. KcsA thermal denaturation is known to include (i) dissociation of the homotetrameric channel into its constituent subunits and (ii) protein unfolding. The ion concentration-dependent changes in the thermal stability of the protein, evaluated as the Tm value for thermal-induced denaturation of the protein, may suggest the existence of both high- and low-affinity K+ binding sites of KcsA, which lend support to the tenet that channel gating may be governed by K+ concentration-dependent transitions between different affinity states of the channel selectivity filter. We also found that Na+ binds to KcsA with a KD similar to that estimated electrophysiologically from channel blockade. Therefore, our findings on ion binding to KcsA partly account for K+ over Na+ selectivity and Na+ blockade and argue against the strict “snug fit” hypothesis used initially to explain ion selectivity from the X-ray channel structure. Furthermore, the remarkable effects of increasing the ion concentration, K+ in particular, on the Tm of the denaturation process evidence that synergistic effects of the metal-mediated intersubunit interactions at the channel selectivity filter are a major contributor to the stability of the tetrameric protein. This observation substantiates the notion of a role for ions as structural “effectors” of ion channels.  相似文献   

17.
A model calculation is carried out to study the potential energy profile of a sodium ion with several water molecules inside a simplified model of the gramicidin ion channel. The sodium ion is treated as a Lennard-Jones sphere with a point charge at its center. The Barnes polarizable water model is used to mimic the water molecules. A polarizable and deformable gramicidinlike channel is constructed based on the model obtained by Koeppe and Kimura. Potential minima and saddle points are located and the static energy barriers are computed. The potential minima at the two mouths of the channel exhibit an aqueous solvation structure very different from that at any of the interior minima. These sites are approximately 23.6 and 24.4 A apart for binding of a sodium ion and a cesium ion, respectively. Ionic motion from these exterior sites to the first interior minimum requires substantial rearrangement of the waters of solvation; this rearrangement may be the hydration/dehydration step in ionic permeation through the channel. Based on these results, a mechanism by which the sodium ion moves from the exterior binding site to the interior of the channel is proposed. Our model channel accommodates about eight water molecules and the transport of the ion and water within the channel is found to be single file. Results of less extensive calculations for Cs+ and Li+ ions in a channel with or without water are also reported.  相似文献   

18.
19.
The estimation of ion channel permeability poses a considerable challenge for computer simulations because of the significant free energy barriers involved, but also offers valuable molecular information on the ion permeation process not directly available from experiments. In this article we determine the equilibrium free energy barrier for potassium ion permeability in Gramicidin A in an efficient way by atomistic forward-reverse non-equilibrium steered molecular dynamics simulations, opening the way for its use in more complex biochemical systems. Our results indicate that the tent-shaped energetics of translocation of K+ ions in Gramicidin A is dictated by the different polarization responses to the ion of the external bulk water and the less polar environment of the membrane.  相似文献   

20.
Soh H  Park CS 《Biophysical journal》2001,80(5):2207-2215
Small conductance Ca2+-activated K+ channels (SK(Ca) channels) are a group of K+-selective ion channels activated by submicromolar concentrations of intracellular Ca2+ independent of membrane voltages. We expressed a cloned SK(Ca) channel, rSK2, in Xenopus oocytes and investigated the effects of intracellular divalent cations on the current-voltage (I-V) relationship of the channels. Both Mg2+ and Ca2+ reduced the rSK2 channel currents in voltage-dependent manners from the intracellular side and thus rectified the I-V relationship at physiological concentration ranges. The apparent affinity of Mg2+ was changed as a function of both transmembrane voltage and intracellular Ca2+ concentration. Extracellular K+ altered the voltage dependence as well as the apparent affinities of Mg2+ binding from intracellular side. Thus, the inwardly rectifying I-V relationship of SK(Ca) channels is likely due to the voltage-dependent blockade of intracellular divalent cations and that the binding site is located within the ion-conducting pathway. Therefore, intracellular Ca2+ modulates the permeation characteristics of SK(Ca) channels by altering the I-V relationship as well as activates the channel by interacting with the gating machinery, calmodulin, and SK(Ca) channels can be considered as Ca2+-activated inward rectifier K+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号