首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Y chromosome contains a group of repeated DNA elements, identified as 3.4-kilobase pair (kb) fragments in Hae III digests of male genomic DNA, which contain both Y-specific and non-Y-specific sequences. We have used these 3.4-kb Hae III Y fragments to explore the organizational properties and chromosomal distribution of the autosomal homologs of the non-Y-specific (NYS) 3.4-kb Hae III Y elements. Three distinct organizations, termed domains, have been identified and shown to have major concentrations on separate chromosomes. We have established that domain K is located on chromosome 15 and domain D on chromosome 16 and suggested that domain R is on chromosome 1. Our findings suggest that each domain is composed of a tandemly arrayed cluster of a regularly repeating unit containing two sets of repeated sequences: one that is homologous to the NYS 3.4-kb Hae III Y sequences and one that does not cross-react with the 3.4-kb Hae III Y repeats. Thus, these autosomal repeated DNA domains, like their Y chromosome counterparts, consist of a complex mixture of repeated DNA elements interspersed among each other in ways that lead to defined periodicities. Although each of the three identified autosomal domains cross-reacts with 3.4-kb Hae III Y fragments purified from genomic DNA, the length periodicities and sequence content of the autosomal domains are chromosome specific. The organizational properties and chromosomal distribution of these NYS 3.4-kb Hae III homologs seem inconsistent with stochastic mechanisms of sequence diffusion between chromosomes.  相似文献   

2.
Evolution of human Y-chromosome DNA   总被引:6,自引:0,他引:6  
We have used human male-specific 3.4 kb Hae III restriction endonuclease fragments to explore the evolutionary history of man's Y-chromosome. We have identified four sets of reiterated, sequences on the basis of their relative sequence homology with autosomal DNA. The sequences account for approximately 40% of the human Y-chromosome, are interspersed within the same 3.4 kb Hae III fragments, are heterogeneous and contain all reiterated DNA previously demonstrated to be specific for the Y-chromosome (it-Y DNA). Y-specific 3.4 kb Hae III sequences do not reassociate with either human female or ape DNA at standard reassociation criteria. However, approximately half of it-Y DNA (cross reacting it-Y) reassociates with both human female and ape DNA at reduced reassociation criteria. The remaining half (Y-specific it-Y) retains its specificity for the human Y-chromosome. These two sets of it-Y DNA have distinct reiteration frequencies and thermal stabilities with their Y-chromosome homologs. Non-Y-specific 3.4 kb Hae III sequences reassociate with both human female and ape DNA at standard reassociation criteria. The abundance of these non-Y-specific sequences decreases as a function of their evolutionary distance from man. One subset of non-Y-specific 3.4 kb Hae III sequences forms stable duplexes with human Y-chromosome DNA and with human and ape autosomal DNA. No detectable base-mismatch occurs among these homologs suggesting complete conservation of these sequences during primate evolution. The second subset of Non-Y-specific Hae III sequences form stable duplexes with human Y-chromosome DNA but highly mismatched duplexes with human and ape autosomal DNA.The finding that homologs of 3.4 kb Hae III sequences are not found within the Y-chromosome of apes but are only present in autosomes suggests that 3.4 kb Hae III sequences are largely autosomal in origin. Since autosomal homologs of most 3.4 kb Hae III-sequences exhibit a greater degree of divergence than those localized to the Y-chromosome, their evolutionary history seems to be chromosome-dependent.Our findings are not easily correlated with the comparative morphology of primate Y-chromosomes and suggest that sequence rearrangement has been a major event in the evolution of the human Y-chromosome. The significance of the specific interspersion of four sets of reiterated sequences, with distinct evolutionary histories, within a repeating unit specific to the human Y-chromosome is not clear. The apparent conservation of at least some of these reiterated sequences suggests they may be of functional importance.  相似文献   

3.
A 307-bp Sau3AI fragment previously cloned by deletion enrichment from the bovine Y chromosome was used to isolate a larger lambda EMBL3A genomic cattle clone. The whole 13-kb insert did not give a sex-specific pattern of hybridization to Southern blots of cattle DNA. Subclones from this phage, however, did show that this fragment had a Y-chromosomal origin. It was estimated that at least 40% of the cattle Y chromosome is composed of repeated sequences related to those within these subcloned fragments. Sequences within these subclones are male-specific or male-enriched also in sheep, goats, and deer. Comparison of cattle and sheep homologues of these sequences reveals that much greater amplification and rearrangement have occurred on the cattle Y chromosome than on the sheep Y. The apparent insertion of sequences into cattle Y-specific sequences relative to the sheep homologues suggests possible mechanisms for the evolution of the artiodactyl Y chromosome.  相似文献   

4.
E E Lamar  E Palmer 《Cell》1984,37(1):171-177
We have investigated the structure of the murine Y chromosome by first developing a novel method for specifically cloning Y-encoded DNA and then generating a library enriched for Y-specific DNA sequences. Three randomly chosen Y DNA clones were studied and found to share several interesting properties: all three are members of small Y-specific multisequence families; all three are mouse-specific; and all three probes detect Y-encoded restriction fragments that are polymorphic. Examination of polymorphic Y chromosome restriction fragments in male DNA from nine different inbred strains suggests that only two polymorphic forms of Y chromosomal DNA exist among inbred strains of mice.  相似文献   

5.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

6.
Three cases of 45,X/46,XYnf mosaicism   总被引:1,自引:1,他引:0  
Summary Three patients with 45,X/46,XYnf mosaicism were investigated by Southern hybridization using both X- and Y-specific DNa probes. Our patients seem to be hemizygous for the X chromosomal loci tested. Single-copy and low-copy repeated Y chromosomal sequences assigned to the short arm, centromere, and euchromatin of the long arm have been detected in our patients, suggesting the Y chromosomal origin of the marker chromosome both in male and female cases studied. Densitometry of autoradiographs revealed a double dose of Yp-specific fragments of the DXYS1 locus. None of the patients tested showed either the 3.4- or the 2.1-kb Hae III malespecific repeated DNa sequences. It seems likely that the Ynf is a pseudodicentric chromosome with duplication of Yp and euchromatic Yq sequences, the Yq heterochromatin being lost. Our findings indicate structural heterogeneity of the marker chromosome and in addition provide further information on the relative position of DNa sequences detectected by DNA probes 50f2, M1A, and pDP105.  相似文献   

7.
Molecular cloning and mapping of 10 new probes on the human Y chromosome   总被引:5,自引:0,他引:5  
We have developed a novel positive cloning vector whose use precludes the cloning of any fragments less than 0.8 kb as well as 3.4-kb EcoRI fragments of DYZ1, the largest repeating-DNA family on the long arm of the human Y chromosome. Using this vector, we subcloned inserts of a Y-chromosome-specific phage library constructed from EcoRI-digested flow-sorted Y-chromosome DNA. Ten novel Y-specific fragments were obtained. Their localization on the Y chromosome was determined by deletion mapping using clinical samples with structurally abnormal Y chromosomes. The long arm of the Y chromosome was divided into 12 segments by the novel probes in combination with established probes. The amelogenin-like sequence, mapped on the long arm in Human Gene Mapping 10, has been mapped on the short arm.  相似文献   

8.
Four cloned unique sequences from the human Y chromosome, two of which are found only on the Y chromosome and two of which are on both the X and Y chromosomes, were hybridized to restriction enzyme-treated DNA samples of a male and a female chimpanzee (Pan troglodytes), gorilla (Gorilla gorilla), and pig-tailed macaque (Macaca nemestrina); and a male orangutan (Pongo pygmaeus) and gibbon (Hylobates lar). One of the human Y-specific probes hybridized only to male DNA among the humans and great apes, and thus its Y linkage and sequence similarities are conserved. The other human Y-specific clone hybridized to male and female DNA from the humans, great apes, and gibbon, indicating its presence on the X chromosome or autosomes. Two human sequences present on both the X and Y chromosomes also demonstrated conservation as indicated by hybridization to genomic DNAs of distantly related species and by partial conservation of restriction enzyme sites. Although conservation of Y linkage can only be demonstrated for one of these four sequences, these results suggest that Y-chromosomal unique sequence genes do not diverge markedly more rapidly than unique sequences located on other chromosomes. However, this sequence conservation may in part be due to evolution while part of other chromosomes.  相似文献   

9.
In situ hybridization with a cloned human Y-specific repeat, pY3.4, derived from the 3.4-kb HaeIII repetitive sequences, is useful in identifying Yq-autosome translocations. In this study nonradioactive procedures were also employed to detect the sites of hybridization. Using a biotinylated probe and either immunofluorescence or horseradish peroxidase reaction, the chromosomes of three probands and members of their families with probable Y-autosome translocations were examined. It was found that not all such translocations can be correctly diagnosed based on conventional banding analysis. The present data indicate the importance of chromosome-specific probes in studying chromosome rearrangements in man.  相似文献   

10.
Y chromosomal DNA of Drosophila hydei   总被引:2,自引:0,他引:2  
Six recombinant DNA clones are described, which are derived from the Y chromosome of Drosophila hydei. They reveal characteristic features of Y chromosomal DNA sequences. Three of the cloned inserts are Y-specific and are members of the same family of repeated sequences associated with the lampbrush loop-forming fertility gene "nooses" in the short arm of the Y chromosome. The other three cloned sequences are members of three different families of repeated sequences, but display a small amount of homology to one another and to the family of the nooses sequences. These three cloned sequences are found preferentially in the Y chromosome, but also in other chromosomal positions. The Y chromosomal copies are located in the short arm of the Y chromosome. The other copies are found in autosomal kinetochore-associated heterochromatin or, for one of the cloned sequences, in one band of the giant chromosome 4, in addition to the kinetochore heterochromatin.  相似文献   

11.
The human male specific expressed gene families CDY and DAZ are known to be repetitively clustered in the Y-specific region of the human Y chromosome. Comparative FISH-mapping of DNA clones specific for CDY and DAZ resulted in a Y-specific but diverse signal pattern within the non-recombining region of the Y-chromosomes of human and great apes. It can be concluded that the non-recombining part of the Y-chromosomes including CDY and DAZ, was exposed to species-specific amplifications, diversifications and rearrangements. Evolutionary fast fixation of any of these variations was possible as long as they did not interfere with male fertility.  相似文献   

12.
The human alpha satellite DNA family is composed of diverse, tandemly reiterated monomer units of approximately 171 basepairs localized to the centromeric region of each chromosome. These sequences are organized in a highly chromosome-specific manner with many, if not all human chromosomes being characterized by individually distinct alphoid subsets. Here, we compare the nucleotide sequences of 153 monomer units, representing alphoid components of at least 12 different human chromosomes. Based on the analysis of sequence variation at each position within the 171 basepair monomer, we have derived a consensus sequence for the monomer unit of human alpha satellite DNA which we suggest may reflect the monomer sequence from which different chromosomal subsets have evolved. Sequence heterogeneity is evident at each position within the consensus monomer unit and there are no positions of strict nucleotide sequence conservation, although some regions are more variable than others. A substantial proportion of the overall sequence variation may be accounted for by nucleotide changes which are characteristic of monomer components of individual chromosomal subsets or groups of subsets which have a common evolutionary history.  相似文献   

13.
C Rahuel  L Noel  G Lucotte 《Human heredity》1985,35(6):369-374
The human Y chromosome carries numerous copies of a tandemly repeated Pvu II sequence, 2.4 kb long. These sequences are specific to humans, and are present in a much smaller amount in the DNA of females. They are localized on the long arm of the Y chromosome. We have compared this sequence with the Hae III 2.1 kb Y-specific repeated sequence, already described.  相似文献   

14.
Summary Hae III restriction patterns are reported in three cases with normal-sized but nonfluorescent Y chromosomes (XO/XYnf mosaics). The 3.4- and 2.1-kb fragment classes of reiterated Y chromosomal DNA were not present in the three cases. Mechanisms leading to these findings are discussed.  相似文献   

15.
The analysis of a recombinant human Y-enriched Hind III total digest phage library prepared from the DNA of flow sorted human Y chromosomes is described. Out of 43 phage inserts from the library thus far mapped, 25 revealed hybridization with Y chromosomal DNA. These inserts may be divided into five groups according to their degree of Y specific hybridization: inserts that hybridize with one single copy or slightly repeated Y-specific DNA sequence, Y-specific repeated sequences of various restriction fragment lengths, Y-chromosomal DNA sequence(s) shared by a sequence on the X and/or on autosomes, Y-specific DNA sequences in addition to multiple X and/or autosomal sequences, or Y-specific repeated DNA in addition to multiple X and/or autosomal sequences. Application of probes from this library for diagnostic purposes is shown in two 46,XY patients with gonadal dysgenesis and small deletions of the Y short arm.  相似文献   

16.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

17.
Summary We report cytogenetic and DNA studies in three XX males. Two males seemed to have extra chromosomal material on the tip of one X chromosome. All three males were shown to have Y chromosome material as indicated by hybridization of Y-specific DNA probes to genomic DNA. One male was unusual in that as he showed the 15-kb fragment detected by pDP34 that is thought to map close to the Y centromere. It is suggested that this finding might point to an inversion on the Y chromosome.  相似文献   

18.
A long repetitive DNA sequence (OtY8) has been cloned from male chinook salmon and its genomic organization has been characterized. The repeat has a unit length of 8 kb and is present approximately 300 times per diploid male nucleus. All internal fragments within the 8-kb repeat segregate from father to son, suggesting that the entire repeat unit is located on the Y chromosome. The organization of this sequence into an 8-kb repeat unit is restricted to the Y chromosome, as are several male-specific repeat subtypes identified on the basis of restriction-site variation. The repeat possesses only weak internal sequence similarities, suggesting that OtY8 has not arisen by duplication of a smaller repeat unit, as is the case for other long tandem arrays found in eukaryotes. Based on a laddered pattern arising from partial digestion of genomic DNA with a restriction enzyme which cuts only once per repeat unit, this sequence is not dispersed on the Y chromosome but is organized as a head-to-tail tandem array. Pulse-gel electrophoresis reveals that the direct-tandem repeats are organized into at least six separate clusters containing approximately 12 to 250 copies, comprising some 2.4 Mb of Y-chromosomal DNA in total. Related sequences with nucleotide substitutions and DNA insertions relative to the Y-chromosomal fragment are found elsewhere in the genome but at much lower copy number and, although similar sequences are also found in other salmonid species, the amplification of the repeat into a Y-chromosome-linked tandem array is only observed in chinook salmon. The OtY8 repetitive sequence is genetically tightly associated with the sex-determination locus and provides an opportunity to examine the evolution of the Y chromosome and sex determination process in a lower vertebrate. Received: 4 April 1997 / Accepted: 22 July 1997  相似文献   

19.
Summary Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of HaeIII restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.  相似文献   

20.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号