首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate of reduction of cytochrome c by ascorbate and by 2-amino-4-hydroxy-6,7-dimethyl-5,6,7,8-tetrahydropteridine was examined as a function of ionic strength and of binding to phospholipid vesicles (liposomes). Binding of cytochrome c to liposomes, which occursat low ionic strength, decreases the rate of reduction by ascorbate by a factor of up to 100, which can be primarily explained on electrostatic grounds. In the absence of liposomes, kinetics of reduction by the neutral pteridine derivative showed no ionic strength dependence. Binding of cytochrome c to liposomes increased the rate of reduction by pteridine. An estimation of the binding constant of cytochrome c to liposomes at 0.06 M ionic strength, pH 7, is given.  相似文献   

2.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

3.
The reaction of the cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) of Paracoccus denitrificans cytoplasmic membranes with the endogenous cytochrome c of the membranes was studied, as well as its interaction with added exogenous cytochrome c from P. denitrificans or bovine heart. The polarographic method was employed, using N,N,N′,N′-tetramethyl-p-phenylenediamine plus ascorbate to reduce the cytochrome c. We found that overall electron transport can proceed maximally while the cytochrome c remains membrane bound; NADH or succinoxidase activities were not inhibited by the addition of substances which bind the P. denitrificans cytochrome c strongly. In contrast to our observations with the spectrophotometric method (Smith, L., Davies, H.C. and Nava, M.E. (1976) Biochemistry 15, 5827–5831), in the polarographic assays the membrane-bound oxidase reacts with about equal rapidity with exogenous bovine and P. denitrificans cytochromes c. The reaction of the oxidase with the endogenous cytochrome c proceeds at high rates and preferentially to that with exogenous cytochrome c; the reaction with the latter, but not the former is inhibited by positively charged poly(l-lysine). The cytochrome c and the oxidase appear to be very closely associated on the membrane.  相似文献   

4.
The preparation, purification, and characterization of four new derivatives of cytochrome c trifluoroacetylated at lysines 72, 79, 87, and 88 are reported. The redox reaction rates of these derivatives with cytochrome b5, cytochrome c1 and cytochrome oxidase indicated that the interaction domain on cytochrome c for all three proteins involves the lysines immediately surrounding the heme crevice. Modification of lysines 72, 79, and 87 had a large effect on the rate of all three reactions, while modification of lysine 88 had a very small effect. Even though lysines 87 and 88 are adjacent to one another, lysine 87 is at the top left of the heme crevice oriented towards the front of cytochrome c, while lysine 88 is oriented more towards the back. Since the interaction sites for cytochrome c1 and cytochrome oxidase are essentially identical, cytochrome c probably undergoes some type of rotational diffusion during electron transport.  相似文献   

5.
The polypeptide chains of bovine-heart cytochrome c oxidase were preparatively isolated by a simple large-scale procedure based on gel permeation chromatography in the presence of sodium dodecyl sulphate.The resolution of the subunits as a function of the cholate and phospholipid content of the preparation was investigated.Cholate, and to a lesser extent, phospholipids interfere with the separation of the subunits; however, they do not prevent dissociation of the enzyme by SDS.Bovine-heart cytochrome c oxidase consists of six major subunits (estimated molecular weights in thousands: 40, 25, 20, 14, 12 and 10). In addition, the enzyme preparation contains at least five minor constituents, present in less than stoichiometric amounts.The first two of the three large subunits, all of which are hydrophobic, have amino-terminal N-formylmethionine. Subunit III, however, has a free methionine N-terminus.  相似文献   

6.
7.
Masaru Nanba  Sakae Katoh 《BBA》1983,725(2):272-279
Absorption changes invoked by short flashes in the Soret band region were measured in the thermophilic cyanobacterium Synechococcus sp. and photoresponses of P-700, cytochrome c-553 and cytochrome f were resolved with the aid of a microcomputer. Cytochrome c-553 was oxidized very rapidly with a half-time of less than 20 μs, while the half oxidation time of cytochrome f was 35–45 μs. The two cytochromes were reduced monophasically with half-time of 2 ms after a lag lasting a few milliseconds. The reduction kinetics of P-700 showed three exponential phases with half-times of 40 μs, 200 μs and 2 ms, which are ascribed to electron donation from cytochrome f, the Rieske iron-sulfur protein and plastoquinone, respectively. The results support the following sequence and rates of linear electron transport at the physiological temperature of the cyanobacterium: P-700
cytochrome c-553
cytochrome f
Rieske protein
plastoquinone.  相似文献   

8.
Cytochrome c oxidase from rat liver was incubated with various proteinases of different specificities and the enzymic activity was measured after various incubation times. A loss of catalytic activity was found after digestion with proteinase K, aminopeptidase M and a mitochondrial proteinase from rat liver. In each case the decrease in enzymic activity was compared with the changes in intensities of the polypeptide pattern obtained after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The susceptibilities of the subunit polypeptides of the soluble cytochrome c oxidase to proteinases were very different. Whereas subunit I was most susceptible, subunits V–VII were rather resistant to degradation. From the relative inaccessibility of subunits V–VII to proteinases it is likely that these polypeptides are buried in the interior of the enzyme complex.  相似文献   

9.
10.
Chromatophore membranes from Rhodopseudomonas sphaeroides activated by light display a carotenoid band shift (phase III) that occurs in response to the electrogenic event (charge separation) in the ubiquinol-cytochrome c oxidoreductase. The rate of formation of this electrogenic event has previously been shown to be strongly dependent on the initial redox state of a bound ubiquinone species (designated Qz) associated with the oxidoreductase. When Qz is reduced (quinol form; QzH2) the electrogenic event takes place in less than 5 ms. When Qz is oxidized (quinone form; Qz) it is much slower; under these conditions the fact that it occurs has been ignored. In this report, we address this issue and describe events that lead to the generation of carotenoid band shift phase III when the total population of Qz of the chromatophore is oxidized before flash activation. The following characteristics are apparent: (1) When oxidized Qz is present before activation, the half-time of formation of carotenoid band-shift phase III is 10–20-times slower than when QzH2 is present before activation. (2) When oxidized Qz is present, the measured full extent of phase III generated by a single-turnover flash is diminished by about one-half of that observed when QzH2 is present before activation. (3) The rate of formation of the carotenoid band shift phase III when Qz is initially oxidized corresponds closely to the rate of completion of the flash-activated electron-transfer cycle. This can be seen under two different conditions: (a) as the partial reduction of cytochrome c1 + c2 (at redox potentials of 200–300 mV) or (b) as the partial reduction of flash-oxidized bacteriochlorophyll dimer, (BChl)2+ (at redox potentials above 300 mV). (4) At the higher redox potentials (above 300 mV), antimycin-sensitive proton binding shares a common, rate-limiting step with the carotenoid band shift phase III and (BChl)2+ reduction. (5) However, proton binding at redox potentials above 300 mV is not observed at all unless valinomycin (K+) is present. Thus, proton binding occurs only when the carotenoid band shift is collapsed in milliseconds, whereas, conversely, the carotenoid band shift is stably generated when proton binding is not observed. These and other observations are the basis of a reevaluation of our current views on the coupling of electron transfer and proton translocation in photosynthetic bacteria.  相似文献   

11.
The binding of oligopeptides containing basic and aromatic residues to phospholipid vesicles has been studied by fluorescence spectroscopy. Tryptophan-containing peptide such as Lys-Trp-Lys or Lys-Trp(OMe) exhibit a shift of their fluorescence toward shorter wavelengths and an increased fluorescence quantum yield upon binding to phosphatidylinositol (PI) or phosphatidylserine (PS) vesicles. No binding was detected with phosphatidylcholine vesicles. The binding is strongly dependent on ionic strength and pH. Binding decreases when ionic strength increases indicating an important role of electrostatic interactions. The pH-dependence of binding reveals that the apparent pK of the terminal carboxyl group of Lys-Trp-Lys is raised by ~3 units upon binding to PI and PS vesicles. The binding of tyrosine-containing peptides to PI and PS vesicles is characterized by an increase in the fluorescence quantum yield of the peptide without any shift in fluorescence maximum. A natural nonapeptide from the myelin basic protein which contains one tryptophan residue binds to PI and PS vesicles at low pH when the acidic groups are neutralized. This binding is accompanied by a shift of the tryptophyl fluorescence toward shorter wavelengths together with an enhancement of the fluorescence quantum yield. Dissociation of the complex is achieved at high ionic strength. These results indicate that aromatic residues of oligopeptides bound to the phospholipid polar heads by electrostatic interactions become buried in a more hydrophobic environment in the vicinity of the aliphatic chains of the lipids.  相似文献   

12.
Core proteins I (Mr 50 000) and II (Mr 47 000) were isolated from beef heart ubiquinol-cytochrome c reductase, and radioimmunoassays were developed for both. Immunoreplica experiments show that antisera against each protein react with a single peptide in both isolated Complex III and in mitochondria. Thus, core proteins are not aggregated forms of smaller peptides as suggested for the yeast protein (Jeffrey, A., Power, S. and Palmer, G., Biochem. Biophys. Res. Commun. (1979) 86, 271–277). Core proteins were quantitated in Complex III and in mitochondria using radioimmunoassay. Approx. 2 mol core protein II per mol core protein I were found. A molar ratio of 1 : 2 : 2 : 1 is suggested for core protein I : core protein II : cytochrome b : cytochrome c1. Radioimmunoassay shows that the antibodies react as extensively with Complex III-bound core protein as with the isolated core proteins. In spite of this, the antibodies do not inhibit electron transport in submitochondrial particles or isolated Complex III, and they have no oligomycin- or uncoupler-like effects on submitochondrial particles oxidizing NADH. The combined results from radioimmunoassay and immunoreplica experiments strongly suggest, however, that core proteins are specifically associated with Complex III in the mitochondria, implying a specific role there.  相似文献   

13.
(1) The kinetics of the reduction by duroquinol of the prosthetic groups of QH2: cytochrome c oxidoreductase and of the formation of ubisemiquinone have been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) The formation of the antimycin-sensitive ubisemiquinone anion parallels the reduction of both high-potential and low-potential cytochrome b-562. (3) The rates of reduction of both the [2Fe-2S] clusters and cytochromes (c + c1) are pH dependent. There is, however, a pH-dependent discrepancy between their rate of reduction, which can be correlated with the difference in pH dependencies of their midpoint potentials. (4) Lowering the pH or the Q content results in a slower reduction of part of the [2Fe-2S] clusters. It is suggested that one cluster is reduced by a quinol/semiquinone couple and the other by a semiquinone/quinone couple. (5) Myxothiazol inhibits the reduction of the [2Fe-2S] clusters, cytochrome c1 and high-potential cytochrome b-562. (6) The results are consistent with a Q-cycle model describing the pathway of electrons through a dimeric QH2: cytochrome c oxidoreductase.  相似文献   

14.
The aim of our work is to show the importance of the role of hydrophobic bonds in maintaining Mg2+-ATPase or sucrase activity and Na+-coupled d-glucose uptake normal for the brush border of rat enterocytes. The activity of the two enzymes and the d-glucose uptake were therefore measured under the action of n-aliphatic alcohols and related to the fluidity determined by ESR. Three concentrations were used for the first eight alcohols, those of octanol being about 1500-times lower than those of methanol. For each alcohol the d-glucose uptake and the fluidity were linear functions of the logarithm of the concentration, the linear regressions being practically parallel and equidistant. The concentrations (C) of the eight alcohols inhibiting the d-glucose uptake by 80% were similar to those increasing the membrane fluidity by 3%. The linear relationship which existed in both cases between log 1 / C and log P, P being octanol / water partition coefficients of the alcohols, was evidence of great sensitivity to the hydrophobic effect of the alcohols. Only the first alcohols, however, produced any notable inhibition of Mg2+-ATPase and sucrase. Hydrophobic bonds are thus shown to have little influence in maintaining the activity of Mg2+-ATPase and sucrase, but they modulate the Na+-coupled d-glucose uptake.  相似文献   

15.
In inside-out red cell membrane vesicles ATP-dependent calcium transport is activated by the divalent metal ions Mg2+, Mn2+, Co2+, Ni2+ and Fe2+. This activation is based on the formation of Me2+-ATP complexes which can serve as energy-donor substrates for the calcium pump, and probably, satisfy the requirement for free Me2+ in this transport process. Higher Me2+ concentrations inhibit calcium transport with various efficiencies. Mn2+ directly competes with Ca2+ at the transport site, while other divalent metal ions investigated have no such effect. The formation of the hydroxylamine-sensitive phosphorylated intermediate (EP) of the red cell membrane calcium pump from [γ-32P]ATP is induced by Ca2+ while rapid dephosphorylation requires the presence of Mg2+. At higher concentrations Mn2+ and Ni2+ inhibit predominantly the formation of EP, while Co2+ and Fe2+ block dephosphorylation. The possible sites and nature of the divalent metal interactions with the red cell calcium pump are discussed. Hydroxylamine-insensitive membrane phosphorylation in inside-out vesicles from [γ-32P]ATP is significantly stimulated by Mn2+ and Co2+, as compared to that produced by Mg2+, Fe2+ and Ni2+. Part of this labelling is found in phospholipids, especially in phosphatidylinositol. The results presented for the metal dependency of protein and lipid phosphorylation in red cell membranes may help in the characterization of ATP consumptions directly related to the calcium pump and those involved in various regulatory processes.  相似文献   

16.
Target sizes of the renal sodium-d-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at ?50°C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent d-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4–4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 ± 38 000. From the tracer exchange experiments a molecular weight of 345 000 ± 24 500 was calculated for the d-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and γ-glutamyltransferase, whose target sizes were found to be 68 570 ± 2670 and 73 500 ± 2270, respectively. These findings provide further evidence for the assumption that the sodium-d-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and d-glucose translocation.  相似文献   

17.
D. Zannoni  B.L. Marrs 《BBA》1981,637(1):96-106
Membranes from cells of Rhodopseudomonas capsulata grown anaerobically in the dark on glucose plus dimethyl sulfoxide differ from those obtained from photoheterotrophically grown cells in several ways: (a) there are qualitative and quantitative variations in the cytochrome composition; (b) electron-transport rates are unusually low in the cytochrome b to cytochrome c region; (c) light-induced ATP synthesis is dependent on the ability of the alternate respiratory pathway to maintain the Q10-cytochrome b complex in a partially oxidized state; (d) a non-energy-conserving NADH-dehydrogenase activity dominates the respiratory activity. In addition, data obtained with both wild-type and mutant cells that contain altered electron-transport systems tend to exclude a role of the redox chain as ATP-producing machinery during anaerobic/dark growth.  相似文献   

18.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

19.
Purified plasma membrane vesicles isolated from R3230AC rat mammary tumors displayed carrier-mediated and stereospecific uptake. Uptake was shown to be proportional to protein concentration, sensitive to increasing osmolarity, and inhibited only by substrates entering by the same carrier. Carrier-mediated glucose uptake was inhibited rapidly by estradiol-17β and phloretin in a dose-dependent manner, whereas proline uptake was not affected by estradiol-17β. The data suggest that the inhibition of glucose by estradiol and phloretin, originally observed in whole cells, occurs by an interaction of the steroid with a component on the plasma membrane. In contrast, the lack of effects of estradiol on proline transport into vesicles implies that intracellular components may have mediated the estrogen-induced effects observed in whole cells.  相似文献   

20.
Pamela S. David 《BBA》2005,1709(2):169-180
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30-50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号